8085 Microprocessor Programming

EB-8085 TEXTBOOK 595-4218-04

= Core M[:lelslale]leIe};

E=HEATHKIT

EDUCATIONAL SYSTEMS

Prepare to succeed.™

8085 Microprocessor Programming

EB-8085 TEXTBOOK 595-4218-04

8085 MICROPROCESSOR PROGRAMMING, Textbook

Copyright © 2001, 1998, 1993, 1989 by Heathkit Company, inc., Benton
Harbor, Michigan 49022. All Rights Reserved. Printed in the United States
of America. Except as permitted under the United States Copyright Act of
1976, no part of this publication may be reproduced or distributed in any
form or by any means, electronic or mechanical, including photocopying,
recording, storage in a data base or retrieval system, or otherwise, with-
out the prior written permission of the publisher.

II

INTRODUCTION

The 8085 Microprocessor Programming course is designed to teach you
the fundamentals of microprocessors in general and the 8085 instruction
set in particular. The fundamental terms and characteristics of all
microprocessors are the same. The actual registers and their relation-
ships to each other and the outside world is all that is different.

The 8085 is a general purpose microprocessor. It uses an eight bit data
bus and a sixteen bit address bus for memory access and the same data
bus and low eight bits of the address bus for input and output operations.
The 8085 has 5 hardware interrupt lines, not including the reset. It also
has a serial input line and a serial output line.

This course is organized into units which divide the subject of
microprocessors into six areas: microprocessor fundamentals, 8085
arithmetic and logic instructions, 8085 data movement instructions,
8085 jump instructions and condition codes, 8085 stack related instruc-
tions, and 8085 I/O and interrupt instructions. Notice that the first unit
is about microprocessors in general, and all the remaining units specifi-
cally discuss the 8085. The experiments for this course are separate, so
that you can perform them again and again, whenever desired, without
searching through the text. The software for the experiments is provided
on the EB-8085-30 ROM cartridge, which plugs into the EWS-8085
trainer system.

The experiments for this course are designed to be performed on the
EWS-8085 trainer system. The EWS-8085 trainer system is composed of
an ET-3800 trainer with an ETC-8085 CPU module installed. The com-
plete system contains not only the 8085 microprocessor, but a 21 key
hexadecimal keypad, a 40 character LCD display (2 rows of 20 charac-
ters), 8K bytes of RAM, 24K bytes of ROM, a programmable timer, a 130
connector breadboard, and 8- bit output port, an 8-bit input port, an RS-
232C interface, a D/A converter, and an A/D converter. In this configura-
tion, the trainer will accept the ETC-128 EPROM cartridge, which can
store sixteen 1K byte programs.

IT1

In the trainer documentation, you will see that the microprocessor is
referred to more specifically than just 8085. If you were to open the CPU
module (And we really wish you wouldn’t) you might find that the MPU
has still a different identification. Several manufacturers make 8085
equivalent ICs. All have the same registers, bus lines, and instruction
set. Therefore, it is easiest to refer to them all by the generic name, 8085.
Further, the 8085 is compatible with the 8080 — except that the 8080
cannot perform the read and set interrupt mask instructions (RIM and
SIM). Also, it does not have the TRAP, RST 7.5, RST 6.5, and RST 5.5
interrupts, or any of the lines associated with those instructions and in-
terrupts.

The 19 experiments that complement the text demonstrate the concepts
you learned in the unit. The table of contents for the experiments iden-
tifies which unit each is related to. This will help you, when you refer to
them after you complete the course.

COURSE OBJECTIVES

After you have completed this course you will be able to:

1.

Identify and define the words, terms, and expressions associated
with microprocessors.

Describe the main components of an elementary microcomputer
system and identify their functions.

Identify the program controlled registers in an 8085 ImMicroprocessor.
Develop a program flowchart.

Write and edit elementary machine code and assembly language
programs for the 8085 using the EWS-8085 Trainer System.

Given an 8085 assembly language mnemonic and a table of opcodes,
determine the corresponding machine code.

COURSE OUTLINE

UNIT 1 — MICROCOMPUTER BASICS
INTRODUCTION
UNIT OBJECTIVES
TERMS AND CONVENTIONS
Stored Program Concept
Computer Words
Word Length
AN ELEMENTARY MICROCOMPUTER
Memory
Fetch-Execute Sequence
A Sample Program
EXECUTING APROGRAM
The Fetch Phase
The Execute Phase
Fetching the Add Instruction
Executing the ADI Instruction
Fetching and Executing the HLT Instruction
UNIT SUMMARY
EXPERIMENTS

UNIT 2 — MICROPROCESSOR ARCHITECTURE
INTRODUCTION
UNIT OBJECTIVES
ARCHITECTURE OF THE 8085 MPU
The Registers
INSTRUCTION SET
ARITHMETIC INSTRUCTIONS
Add
Subtract
SPECIAL ARITHMETIC AND LOGIC OPCODES
Logical AND
Logical OR
Logical Exclusive OR
SHIFT AND OTHER LOGIC OPERATIONS
DAA and CMA
Shifts or Rotates
UNIT SUMMARY

VII

UNIT 3 — ADDRESSING MODES
INTRODUCTION
UNIT OBJECTIVES
MOVE INSTRUCTIONS
IMMEDIATE ADDRESSING
Assembly Language
Immediate Addressing to 16-bit Registers
STORES AND LOADS
Indirect Loads and Stores
Direct Loads and Stores
OTHER REGISTER TRANSFERS
UNIT SUMMARY
EXPERIMENTS

VIII

UNIT 4 — INTRODUCTION TO PROGRAMMING
INTRODUCTION
UNIT OBJECTIVES
PROGRAMMING LANGUAGES
PLANNING YOUR PROGRAM
Flow Charts
Constructing a Flowchart
Coding
CONDITIONAL AND UNCONDITIONAL JUMPING
Condition Codes, or Flags
- Jumps
UNIT SUMMARY
EXPERIMENTS

UNIT 5 — STACK OPERATIONS AND SUBROUTINES
CONTENTS
INTRODUCTION
UNIT OBJECTIVES
WHAT IS ASTACK
The 8085 Stack
AUTOMATIC STACK ACTIVITY AND SUBROUTINES
INSTRUCTIONS THAT CHANGE THE STACK
UNIT SUMMARY
EXPERIMENTS

UNIT 6—INPUT/OUTPUT OPERATIONS AND INTERRUPTS
INTRODUCTION
UNIT OBJECTIVES
OUTPUT OPERATIONS
INPUT OPERAITONS SERIAL /O
Input
Output
INTERRUPTS
More Interrupts
Reset or Restart
UNIT SUMMARY
EXPERIMENTS
UNIT EXAMINATION
EXAMINATION ANSWERS

APPENDIX A—THE 8085 INSTRUCTION SET

APPENDIX B—THE 8085 DATA SHEET

APPENDIX C—EXCERCISE PROGRAM LISTINGS

INDEX

Unit 1

MICROCOMPUTER BASICS

1-2 MICROCOMPUTER BASICS

CONTENTS
INTRODUCTION 1-3
UNITOBJECTIVES 1-4
TERMS AND CONVENTIONS 1-5
Stored Program Concept 1-6
ComputerWords 1-8
WordLength 1-8
AN ELEMENTARY MICROCOMPUTER 1-12
Memory 1-16
Fetch-Execute Sequence 1-20
ASampleProgram 1-21
EXECUTINGAPROGRAM 1-26
TheFetchPhase 1-27
TheExecute Phase 1-32
Fetching the Add Instruction 1-34
Executing the ADI Instruction. 1-36
Fetching and Executing the HLT Instruction. 1-37
UNITSUMMARY 1-39

INTRODUCTION 1-3

INTRODUCTION

A microprocessor is a very complex electronic circuit responsible for the
programmed arithmetic and logic operations of a microcomputer system.
It consists of hundreds of thousands of microscopic transistors squeezed
onto a tiny chip of silicon that is often no more than one-eighth inch square.
The chip is wired into an integrated circuit (IC) package usually contain-
ing 40 or more leads.

The thousands of transistors that make up the microprocessor are arranged
to form many different kinds of circuits within the chip. From the stand-
point of learning how the microprocessor operates, the most important
circuits on the chip are registers, counters, and decoders. In this unit, you
will learn how these circuits can work together to perform simple but use-
ful tasks.

In addition to the standard circuits characteristic of all microprocessors,
the 8085A that you will be learning to program in this course also contains
a serial I/O circuit. This makes it easier to connect to a serial terminal
circuit.

As you learn and progress through this unit (and course) you should be
aware of several things happening. You will find yourself becoming more
familiar with standard microprocessor and programming terms. Many of
these apply to all microprocessors in general, but some are very specific to
the 8085 as used in the ETC-8085 CPU module when inserted into the ET-
3800 trainer. This is referred to as the EWS-8085 Microprocessor Trainer
System. You will be learning and using the programming instructions of
the 8085A. You should recognize that many other microprocessor units
(other than the 8085A) have equivalent instructions to perform the same
kind of operations as those you will be learning here. In this sense, the
programming proficiency that you gain in this course will enable you to
understand and program a wide variety of other microprocessors. You will
also find that although there are many different kinds of microprocessors
available, many common or similar hardware features exist from one to
another. The learning you begin here should be an ongoing process.

If you have previously completed another Heathkit Educational Systems
introductory microprocessor course (for the 6800, 6809, or 6811 micro-
processors) you may want to continue with Unit 2. Unit 1 of this course
presents the same material as those other courses.

1-4 MICROCOMPUTER BASICS

UNIT OBJECTIVES

When you complete this unit you will be able to:

14

Recognize and explain the differences between a microprocessor and
microcomputer in reference to their respective block diagrams.

Define the terms: microprocessor, microcomputer, input, output,
/O, I/O device, I/O port, instruction, program, stored program
concept, word, byte, MPU, ALU, operand, memory, address,
read, write, RAM, fetch, execute, MPU cycle, mnemonic,

opcode, and bus.

Explain the purpose of the following circuits in a typical
microprocessor: accumulator, program counter, instruction
decoder, controller-sequencer, data register, and address
register.

Using a simplified block diagram of a hypothetical microprocessor,
trace the data flow that takes place between the various
circuits during the execution of a simple program.

Write simple straight-line programs that can be executed by the
ET-3800 Microprocessor Trainer with the ETC-8085 CPU
module installed.

TERMS AND CONVENTIONS 1-5

TERMS AND CONVENTIONS

A microprocessor is a logic device that is used in digital electronic sys-
tems. It is also being used by hobbyists, experimenters and low-budget
research groups as a low-cost, general purpose computer. But a distinc-
tion should be made between the microprocessor and the microcomputer.

The microprocessor unit, or MPU, is a complex logic element that per-
forms arithmetic, logic, and control operations. In most cases it is asingle
integrated circuit.

A microcomputer contains a microprocessor, but it also contains other
circuits such as memory devices to store information, interface adapters
to connect it with the outside world, and a clock to act as a master timer
for the system. Figure 1-1 shows a typical microcomputer. The arrows
represent conductors over which binary information flows. The wide ar-
rows represent several conductors connected in parallel. (Parallel cir-
cuits have a separate path for each signal.) A group of parallel conductors
that carry information is called a bus.

1
(J
.

CRi
CLOCK PROCESSOR

N

fpiep |

]
: MEMORY

DATA
BUS

_!\
_l/
Abgngss/ N MEMORY

'\ INTERFACE
—l/ ADAPTER

M I CRCCOMPUTER @\
H H

INPUT
QUTPUT
(1710}
DEVICE

Figure 1-1
A Basic Microcomputer.

1-6 MICROCOMPUTER BASICS

The microcomputer is composed of everything inside the dotted line.
Everything outside the dotted line in Figure 1-1 is referred to as the out-
side world, and all microcomputers must have some means of com-
municating with it. Information received by the microcomputer from the
outside world is referred to as input data. Information transmitted to
the outside world from the microcomputer is referred to as output data.
Input information may come from devices like disk drives, various kinds
of transducers, mechanical switches, keyboards, or even other com-
puters. Output information may be sent to video displays, output
printers, disk drives, or indicator lamps. Some devices such as modems
can serve as both an input and an output device. These devices are
referred to as input/output or I/O devices. The point at which the I/O
device connects to the microcomputer is called an I/O port. The construc-
tion and use of I/O ports, though beyond the scope of this course, is central
to the subject of microprocessor interfacing and applications.

Stored Program Concept

A microcomputer is capable of performing many different operations. It
can add and subtract numbers and it can perform logical operations. It
can read information from an input device and transmit information to
an output device. In fact, depending on the microprocessor used, there
may be several hundred different operations that the microcomputer can
perform.

In spite of all these capabilities, it will do nothing of its own accord. It
will only do what it has been told to do, nothing more and nothing less.
You must tell the computer exactly what operations to perform and the
order in which it should perform them. The operations the computer can
be told to perform are called instructions. A few of the most common in-
structions are ADD, SUBTRACT, LOAD REGISTER, STORE
REGISTER, MOVE DATA, and JUMP (to another sequence of instruc-
tions).

Agroup of instructions that cause the computer to perform a specific task
is called a program. One who writes these instructions is called a
programmer. To design equipment based on a microprocessor, the en-
gineer must know how to program that microprocessor. To repair
microprocessor based equipment, a technician must understand exactly

what the program is doing.

TERMS AND CONVENTIONS 1-7

Programs can be short or long depending on the complexity of the task
to be done. A program to add a sequence of numbers might have only a
few dozen instructions, but a program to control all the traffic lights in
a city would have over a thousand.

A computer is often compared to a calculator, which is controlled by the
keyboard. Even inexpensive calculators can perform several operations
that can be compared to instructions in a computer. By depressing the
right keys, you can instruct the calculator to add, subtract, multiply,
divide, and clear the display. Of course, you must also enter the numbers
that are to be added, subtracted, etc. With a calculator, you can add a list
of numbers as quickly as you can enter the numbers and the instructions.
Thatis, the operation is limited by the speed and accuracy of the operator.

From the start, computer designers recognized that it was the human
operator that slowed the computation process. To overcome this, the
stored program concept was developed. Using this approach, the
program is stored in the computer’s memory. Suppose, for example, that
you have 20 numbers that are to be manipulated by a program that is
composed of 100 instructions. Let’s further suppose that 10 answers will
be produced in the process.

Before any computation begins, the 100-instruction program plus the 20
numbers are loaded into the computer’s memory. Furthermore, 10
memory locations are reserved for the 10 answers. Only then is the com-
puter allowed to execute the program. The actual computation time
might be less than one millisecond. Compare this to the time it would
take to manually enter the instructions and numbers, one at a time, while
the computer is running. This automatic operation is one of the features
that distinguishes the computer from the simple, non-programmable,
calculator. However, the numbers have to be entered in either case.
Therefore, stored programs save time only if the operation needs to be
repeated or if there are many computations to be performed on the same
set of numbers.

1-8 MICROCOMPUTER BASICS

Computer Words

All data is stored in the computer in the form of I’s and 0’s. These 1’s and
0’s are called binary digits, or bits. These bits are represented by such
physical things as magnetic fields and voltages. Because a bit can rep-
resent so little, the bits are grouped together. In computer terminology,
a word is a group of binary digits that can occupy a storage location. Al-
though the word is made up of several binary digits, the computer hand-
les each word as if it were a single unit. Therefore, the word is the
fundamental unit of information used in the computer.

Word Length

In the past several years, a wide variety of microprocessors have been
developed. Their cost and capabilities vary widely. One of the most im-
portant characteristics of any microprocessor is the word length it can
handle. This refers to the length in bits of the most fundamental unit of
information.

Today, there are many 16-bit microprocessors, and the most common
word length is 16 bits. As a result, the term word has come to mean 16
bits. In spite of this, and because 8-bits is both a useful size and an his-
torically common size, many operations are based on 8 bits, which is
called a byte. Various computers are identified by the number of bits
they can work with. As a result, some are called 8-bit machines and
others are called 16-bit machines.

Because computers operate in binary, it is often desirable to give num-
bers in binary (base 2) or hexadecimal (base 16). To avoid confusion, sub-
script numbers 2, 10, and 16 are used to indicate the base of the number
system used. The lowest 8-bit binary number is 0000 00002 or 0016. The
highestis 1111 11112 or FF1¢. In decimal numbers, this is the range from
0 to 25510. Therefore, a byte can have any one of 25610 unique values.
Therefore, a byte can specify positive numbers between 0 and 25510. Or,
if the byte represents an instruction, it can be any one of 256 possible
operations. It is alsocommon for a byte to represent a character or printer
operation. When the high bit is used as a sign (0 for positive or 1 for nega-
tive) the byte can represent numbers from -128 to +127.

TERMS AND CONVENTIONS 1-9

Naturally, you must have some list of what all the byte patterns repre-
sent. The most commonly accepted list is ASCII, the American Stand-
ard Code for Information Interchange. However, ASCII provides only for
the first 12819 values (0 through 12710). The greater values 128)¢
through 25510 do not have standard ASCII values.You will find a HEX-
ASCII table on the Assembly Language Reference card.

Let’s look at an example. In ASCII, the byte 0100 00012 represents the
letter "A". On some computers, 1100 00012 also represents an "A," but on
others it is used for a graphic character. As you can guess, this is a cause
for some confusion when values are transported from one computer to
another.

Even within a specific computer, the same byte pattern can have many
meanings as mentioned. It can represent a character, a number, or an in-
struction. You as the programmer, must ensure that an ASCII character
or a binary number is not mistaken for an instruction. Later, you will see
the consequences of making this mistake.

In a 16-bit machine, ASCII is still commonly used to represent charac-
ters. But the 16-bit word allows them to easily work with numbers up to
65,53510. It also allows them to have 65,53510 different instructions.
However, this also adds to the complexity of the microprocessor. Many
microprocessors, such as the 8085, which is the subject of this course, use
bytes (8-bits) for data, and 16-bit words for memory addressing. This al-
lows them to access 65,53610 memory locations and still keep most opera-
tions relatively simple. It is also important to realize that even an 8-bit
computer can combine two or more bytes to represent numbers larger
than 25510.

The 8-bit value is reflected in the hardware. Within the MPU, there are
temporary storage locations called registers. The registers are usually
byte-length, or multiples of eight bits. Not only are the values within the
MPU in groups of eight bits, but the transfer outside the MPU is also in
groups of eight. For example, it takes eight wires to transfer a byte of
data from the MPU to memory. This group of eight wires is called the
data bus. The sixteen wires that carry the address are called the ad-
dress bus. Each memory location stores 8 bits.

1-10 MICROCOMPUTER BASICS

To manipulate the address values within the MPU, the sixteen bit word
is handled in two bytes as shown in Figure 1-2. So that it is easier to dis-
cuss the bits in the byte and the bytes in the word, there are some terms
you must know. The least significant bit, or LSB, is the one that hasa
place value of 1 when the byte represents a number. This is shown as the
right most bit in the figure. The most significant bit holds the highest
position value in the byte or word. This bit has a value of 12810 in a byte
or 3276810 in a 16-bit word. This is also the position that represents the
sign (+ or -) in a signed number.

ONE BYTE
A
r N
BIT 7 l I. BIT O
(MSB)_.IO'OIOEOIOIOIO g (L8B)
HIGH ORDER LOW ORDER
BYTE BYTE
s = = A
oo o~[ole o o] ol o] o] o o o oo o] [0 o—B!T.0
(- ~ J
ONE WORD
Figure 1-2
Bytes and Words.

To further assist in identifying the bits, each has a number. The LSB is
bit 0, because it has a place value of 2% The MSB of a byte is bit 7 as
shown in Figure 1-2. This is because its place value, 12810, is 2°. Similar-
ly, in the 16-bit word the MSB is bit 15, because 3276810 is 21°. The bytes
are also referred to by location. Bits 0 through 7 are the low order byte,
or least significant byte. Bits 8 through 15 are the high order byte, or
most significant byte.

TERMS AND CONVENTIONS 1-11

Self-Test Review

1. Memory and other additional circuits are what distinguish a
from a microprocessor.

2. A group of parallel conductors that carry information is called a

3. Signals received by the microcomputer are called signals.
4, The microcomputer sends signals to the "outside world" from its
ports.

5. A sequence of instructions that perform a specific task is called a

6. A binary digit is called a

7. The most common computer code for representing the alphabet is
called
8. BitOisthe_____ significant bit.

9. A Dbyte consists of ____ bits.
10. What is the bit number of the MSB in a byte?
11. What is the largest number that can be represented by a byte?

12. What is the largest number that can be represented by a 2-byte
word?

13. The temporary storage locations within the MPU are called

1-12 MICROCOMPUTER BASICS

AN ELEMENTARY MICROCOMPUTER

One of the difficulties you may encounter in learning about a microcom-
puter for the first time is the complexity of its main component -- the
microprocessor. The microprocessor may have a dozen or more registers
varying in size from 1 to 32 bits. Of course this is not the limit, registers
of 128 bits or more could become very common. The microprocessor can
have hundreds of instructions, most of which are implemented several
different ways. It will have data, address, and control buses. In short, it
can be intimidating, if not overwhelming, to start out by considering one
of todays full-capability microprocessors.

To avoid this problem, we will begin by considering a "stripped- down"
version. This will allow you to understand the fundamentals, without
getting "bogged-down" in the complexity of the unit. All the characteris-
tics of the more complicated units are embodied in this hypothetical
model. To make the transition to the 8085 easier, we have used examples
from the 8085’s instruction set. The programming examples will actual-
ly work on the EWS-8085 Microprocessor Trainer System.

MICRO- 1—
PROCESSOR

CONTROL
BUS Tt

N
MEMORY <:‘
— |

ADDRESS I DATA
BUS —a L\ le— BUS
V| INTERFACE
_—> ADAPTER
1 /0
DEVICE
Figure 1-3

The Basic Microcomputer.

AN ELEMENTARY MICROCOMPUTER 1-13

A block diagram of a basic microcomputer is shown in Figure 1-3. Its
basic elements are the microprocessor, the memory, and the I/O circuitry.
For simplicity, we will ignore the I/O circuitry in this unit. In order to do
this, we will assume that the program and data are already in memory
and that the results of any computations will be held in a register and
stored in memory. Ultimately, of course, the program and data must come
from the outside world and the results must be sent to the outside world.
We will save these procedures until a later unit. This will allow us to con-
centrate on the microprocessor and the memory. '

The microprocessor unit is shown in greater detail in Figure 1-4. For
simplicity, only the major registers and circuits are shown. Notice that
most of the counters, registers, and buses are 8-bits wide, to accom-
modate a full byte of data.

r
.

b |

! MICROPROCESSOR UNIT l_c r°re f
: (MPU) i
| T
: it FETCH EXECUTE !
H :T TT COﬁTﬁOL Tcx',\ru'rl:toa :
: g
- CARRY _ CLOCK
; HE&F:HSTEH | I l I I J] l-—-C CONTROLLER E co‘:ﬁl_EOL
: seouencer = CNTR
: ACCUMULATOR ;
! PROGRAM ;
ji COUNIER INSTRUCTION | §
Ll T LT T |=e :
: DECODER :
: uwnnsss {7 f -
H REGISTER :
iLd LT L[]] Jeo D O I I £
DATA :
: i REGISTER :
: N :
: i
S .

N 258 BTEs oF | A N

] agmoRy aas [N

ADDRESS DATA
BUS —* ~— BUS
J\ INPUT ~QUTPUT /_l\
e 110 N
et 'V'J
Figure 14

A Simplified Microprocessor Unit.

1-14 MICROCOMPUTER BASICS

One of the most important circuits is the arithmetic logic unit (ALU).
Its purpose is to perform the arithmetic and logic operations on the data
that are delivered to it. The ALU has two main inputs. One comes from
a register called the accumulator, and the other comes from the data
register. In more complex computers there may be more possible sour-
ces, and more than one ALU. The ALU can combine the two pieces of data
in only a few ways -- addition, subtraction, or one of the logical opera-
tions (such as: OR, AND, and XOR), which will be discussed in Unit 2.

The operation that the ALU performs is determined by signals on the
various control lines (Marked C in Figure 1-4) within the MPU.

Generally, the ALU receives one number from the accumulator and
another from the data register as shown in Figure 1-5A. Because some
operation is performed on these data words, the two inputs are called
operands or arguments. After the operation is performed, the results
are usually returned to the accumulator, which is how that register got
its name. For example, assume the two numbers 719 (binary 0000 0111)
and 910 (binary 0000 1001) are to be added, Before the numbers can be
added, one operand must be placed in the accumulator and the other
operand placed in the data register. When the proper ALU control lines
are activated, the accumulator and data registers are gated together. A
fraction of a second later, the result of that operation (in this example
1610, binary 0001 0000) is routed back into the accumulator, replacing
the operand, as shown in Figure 1-5B. Notice that all numbers involved
are in binary form.

AN ELEMENTARY MICROCOMPUTER 1-15

A B
FUNCTION

'ADD: :' SELECT
l -

o | o 1
u N u N
T P T P
P ALU u sum|l p ALU U
u 7 u T
T 2 U &
INPUT 1 INPUT 1
s EOOO0EOnn
[olelofoft[ofo] 1] [ofofofofor]]1] PATARERIEER
ACCUMULATOR DATA REGISTER
OPERAND 1-9;9 OR 1001 OPERAND 2-7,4 OR 111; fofolof[o]ofof0]
ACCUMULATOR

SUM - 16, OR 10000,

Figure 1-5
The Arithmetic Logic Unit.
The accumulator is the most useful register in the microprocessor.
During arithmetic and logic operations it performs a dual function.
Before the operation, it holds one of the operands. After the operation it
holds the resulting sum, difference, or logical answer. Many operations
in the microprocessor involve the accumulator in one way or another.

The data register is a temporary storage location used for many opera-
tions. In some microprocessors, the data register is similar to an ac-
cumulator, in that it can receive the results of some operations. In our
hypothetical microprocessor, the data register also holds the instruction
before it is interpreted. You will see how this works a little later in this
unit. It is not uncommon for registers to do more than one thing. As in-
dicated by the arrows in Figure 1-4, all data in our hypothetical
microprocessor passes through the data register on its way from memory
to the accumulator. Data also passes through the data register when
transferred from the accumulator back to memory or one of the other
registers.

The MPU also contains several other important registers and circuits:
the address register, the program counter, the flag register, the index
register, the instruction decoder, and the controller-sequencer. Except for
the flag and index register, these are shown in Figure 1-4.

1-16 MICROCOMPUTER BASICS

The address register is a temporary storage location. It holds the ad-
dress of the memory location or I/O device that is used in the operation
presently being performed.

The program counter is a register that controls the sequence in which
the instructions of the program are executed. Normally, it does this by
counting as each instruction is performed, so that it typically contains
the address of the next instruction. By changing its contents, you can
cause the program to jump, or branch, from one place in memory to
another.

The instruction decoder is a circuit that interprets the meaning of the
byte in the data register when it is a program instruction. The only way
it knows that the byte is an instruction is by the timing.

The controller-sequencer produces a variety of control signals to carry
out the instruction. Because each instruction is different, it has a uni-
que pattern of control signals associated with it. The controller-sequen-
cer produces these patterns after it receives information from the
instruction decoder.

Later you will see how these various elements work together to execute
simple programs. But first, take a closer look at the memory for our
microcomputer.

Memory

A simplified diagram of the 256-byte read/write memory that is used in
our hypothetical microcomputer is shown in Figure 1-6. The memory con-
sists of 25610 locations, each of which can store an 8-bit word. This size
memory is often referred to as 256 X 8. A read/write memory is one that
you can both read data from and write data to with equal ease.

Two buses and a number of control lines connect the memory with the
microprocessor unit. The address bus carries the location of the specific
byte desired, as specified by the address register, from the MPU to the
memory. The control lines indicate whether the byte is to be read or writ-
ten and when the address lines are valid. The data bus carries the data
to the memory during a write operation and from memory to the MPU
during a read operation. Notice in Figure 1-6, that the address and con-
trol lines are inputs to memory and not outputs. The data bus, on the
other hand, has arrows both to and from, because it can be either aninput
to the data register or an output from the data register.

AN ELEMENTARY MICROCOMPUTER 1-17

ADDRESS FROM (reereeuseseemsscssssesssmsssmmmssessansesans TO/FROM
M| CROPROCESSOR B8 BITS 1 MICROPROCESSOR

— 00— LOCATION 00
LOCATION 01
LOCATION 02

D L LT T T PSP p——

ADDRESS
DECODER

8-BIT
DATA BUS

8-BIT
ADDRESS BUS

b

[P———] E

- FF—{LOCATION FF] |

READ/WRITE ! :
COMMAND FROM Ll coNTROL i
MICROPROCESSOR | :
L. S J

Figure 1-6
The Random Access Memory.

Each location has a unique identifying number called its address. The
first location has address 0. The last in this illustration has address
25510, which is binary 1111 1111, or FF hexadecimal. (Notice that the bi-
nary form is written in groups of four bits. This is a common practice that
makes it easy to translate the half-bytes, or nibbles, to hexadecimal.
After you have worked with this notation for a while, it will become very
easy for you to read the nibbles as hexadecimal numbers and visualize
the hexadecimal in binary.)

In our simplified microprocessor, the value from the address register is
always present at the memory, and the read/write signal is normally in
the read condition. Therefore, the contents of the selected memory are
available on the data bus. However, because of the control leads to the
data register, that data is only "read" when it is required by the data
register. For a write operation, these same control leads to the data
register select when the data register is to output to memory. After both
the address and data registers are set to the desired value, the read/write
control line selects a WRITE operation, and the data are stored in
memory. The read/write line is then returned to the read state and the
address and data registers are free to be used for other operations,
without affecting the contents of memory.

1-18 MICROCOMPUTER BASICS

DATA TO
MPU
1001 0111
ADDRESS
0000 0100 MEMORY
LOCATION
00—»
0 1—m
— 02—
—_03-..—-
—0 4—» DATA B
e _.85_- 1001 0111 us
DECODER =
ADDRESS BUS]
I
L]
@
— FF
"READ ——1] conTrRoL
Figure 1-7
Reading from Memory.

Let’s look at these procedures a little closer. The read operation is il-
lustrated in Figure 1-7. The MPU places the address of the memory byte
desired in the address register. This is applied to the address bus, select-
ing address 0416. Because the read/write control line is in the READ
state, the data from address 0416, in this case 1001 01112(9716), are avail-
able on the data bus to the MPU. At this time, the MPU gates the data
bus value into the data register, and the memory has been read.

Itis important to know that reading memory does not affect the contents
of that memory location. This characteristic of not being affected by the
read operation is referred to as nondestructive read out (NDRO). Itis an
important feature, because it allows us to read out the same data as many
times as needed. It also saves the time that would be required to write
the data back into that memory location, which was necessary in early
computers.

More sophisticated microprocessors have additional control lines to
select between memory and I/O. Because of the bus structure, the con-
trol signal that selects between I/O and memory is applied at the memory
and I/O entries to the bus. Therefore, in a read condition, the bus con-
tains which ever input (I/O or memory) is selected.

AN ELEMENTARY MICROCOMPUTER 1-19

®
DATA FROM
MPU
0101 0010
@
ADDRESS
0000 0011 MEMORY
LOCATION
[—00—»
—01—»
_—I02l-*
—03— 0101 0010 DATA BUS
— 04—

| ADDRESS
DECODER
ADDRESS BUS N

®

WRITE CONTROL

m
n

Figure 1-8

Writing into Memory.

The WRITE operation is shown in Figure 1-8. As in the read operation, the address
register applies the desired address on the bus. In this example, the selected address is
03,6 (0000001 1,). The data register applies the correctdata 52, (0101 0010,) tothe data
bus. The WRITE signal is applied and the value is gated to the memory cell. Before the
data or address buses change, the write signal must be removed. Recall, this returns the
bus to aread condition, which is nondestructive, so the memory stays as it was set by the
write operation.

This type of memory, in which any address can be read or written to with equal ease is
called Random Access Memory, or RAM. “Random access™ refers to the fact that any
address can be accessed at any time. In contrast, some memories, such as “bubble”
memory, can only read or write data by sequentially accessing each address location
until the desired address is located. Because it is not an efficient way to store data,
sequential read memory is not commonly used in microcomputer circuits. The other type
of memory most commonly used is called Read Only Memory, or ROM. ROM is just
as randomly accessible as RAM, but it cannot be easily changed. When you see the term
RAM, you must think of Read And write Memory. The process for reading ROM is
exactly the same as reading RAM. But if you try to write to ROM, the value in memory
is not changed.

1-20 MICROCOMPUTER BASICS

Fetch-Execute Sequence

When the microcomputer is executing a program, it goes through a fun-
damental sequence that is repeated over and over again. Recall that a
program consists of instructions that tell the microprocessor exactly
what operations to perform. These instructions must be stored in an or-
derly manner in memory. Typically, this is in the order in which they are
tobe executed. The instructions are read, or fetched, one at a time, from
memory by the MPU. After it is fetched, each instruction is interpreted
and executed.

The operation of the microprocessor can be broken down into two phases,
as shown in Figure 1-9. When the microprocessor is initially started, it
enters the fetch phase. During the fetch phase, an instruction is taken
(read) from memory and decoded by the MPU. Once the instruction is
decoded, the MPU switches to the execute phase. During this phase,
the MPU carries out the operation dictated by the instruction.

FETCH
AN
INSTRUCT ION

Figure 1-9
The Fetch-Execute Sequence.

The fetch phase always consists of the same series of operations. Thus it
always takes the same amount of time. However, the execute phase will
consist of different sequences of events, depending on what type of in-
struction is being executed. Thus, the time of the execute phase may vary
considerably from one instruction to the next.

AN ELEMENTARY MICROCOMPUTER 1-21

A Sample Program

Now that you have a general idea of the registers and circuits found in
a microcomputer, you are ready to examine how all of these circuits work
together to execute a simple program. At this point, you are primarily in-
terested in knowing how each step in the process is accomplished. There-
fore, the program will be a very trivial one. Longer programs work
generally the same way, but with many more instructions.

Let’s see how the computer goes about solving a problem like adding
seven and ten (7 + 10 = ?). While this may seem incredibly easy, the com-
puter has no idea how to solve this problem, until somebody tells it ex-
actly what to do. You must include every detail, because if the right
information is not in the right place when it is needed, the result will be
wrong.

Before you can write the program, you must know what instructions are
available to you and the computer. Every microprocessor has its own in-
struction set. For this example, assume that after you look over the in-
struction set you decide that three instructions are necessary to solve
this problem. These instructions and a description of what they do are
shown in Figure 1-10.

NAME MNEMONI OPCODE DESCRIPTION
Load Accumulator MVI A, 0011 11102 Load (Move) the contents of the
or 3E1¢ next (Immediate) memory address
into the accumulator.
Add ADI 1100 01102 Add the contents of the next
or Cé1e (Immediate) memory address to

the present contents of the
accumulator. The sum will be in
the accumulator.

HALT HLT 0111 01102 Stop all operations.
or 761s

Figure 1-10
Instructions used in the simple program.

The first column in the table gives the name of the instruction. When

~writing programs, it is often inconvenient to write out the entire name.

For this reason, each instruction is given an abbreviation or a memory
aid called a mnemonic. The mnemonics are given in the second column.
The third column is called the operation or opcode.

1-22 MICROCOMPUTER BASICS

This is the binary number that the computer and the programmer use
to represent the instruction. The opcode is given in both binary and
hexadecimal form. The final column describes exactly what operation is
performed when the instruction is executed. Study this table carefully;
you will be using these instructions over and over again.

Assume that you wish to add 7 to 1010 and place the sum in the ac-
cumulator. The program is an elementary one. First, you will load 7 into
the accumulator with the MVI A instruction. Next, you will add 1010 to
the accumulator using the ADI instruction. Finally, you will stop the
program with the HLT (halt) instruction.

Using the mnemonics and the decimal representation of the numbers to
be added, the program looks like this:

MVI A,7
ADI 10
HLT

Unfortunately, the basic microcomputer cannot understand mnemonics,
decimal, or hexadecimal numbers. It can interpret binary numbers and
nothing else. Within the computer you use binary. Therefore, these
mnemonics and numbers must be converted into binary. You can do this
by replacing each mnemonic with its corresponding opcode and each
decimal number with its binary counterpart.

That is:
MVIA,7 becomes 0011 1110 0000 0111 binary representation
opcode from for 7
Figure 1-10
and:
ADI 10 becomes 1100 0110 0000 1010 binary representation
opcode from for 1010
Figure 1-10
Finally,
HLT becomes 0111 0110
opcode from
Figure 1-10

Notice that the program consists of three instructions. The first two in-
structions have two parts: an 8-bit opcode followed by an 8-bit operand.
The operands are the two numbers that are to be added (7 and 1010).

AN ELEMENTARY MICROCOMPUTER 1-23

Recall that the microprocessor and memory work with 8-bit words or
bytes. Because the first two instructions consist of 16-bits of information,
they must be broken into two 8-bit bytes before they can be stored in
memory. Thus, when the program is stored in memory, it will look like
this:

1st Instruction 1st address 0011 1110 Opcode for MVIA
2nd address 0000 0111 Operand (7)

2nd Instruction 3rd address 11000110 Opcode for ADI
4th address 0000 1010 Operand (1010)

3rd Instruction 5th address 0111 0110 Opcode for HLT

As you can see, five bytes of memory are required. You can store this 5-
byte program any place in memory that is not already being used. As-
suming you store it at the first five memory addresses, the memory can
be diagrammed as shown in Figure 1-11.

ADDRESS MEMORY
BINARY
HEX BINARY CONTENTS MNEMONICS/CONTENTS
00 0000 0000 00111110 MVIA
01 0000 0001 00000111 7
02 0000 0010 11000110 ADI
03 0000 0011 00001010 1010
04 0000 0100 01110110 HLT
FD 1111 1101
FE 1111 1110
FF 111 1111
Figure 1-11

The Program in Memory.

Notice that each memory location has two 8-bit binary numbers as-
sociated with it. One is its address, the other is its contents. Be careful
not to confuse these two numbers. The address is fizxed. It is established
when the microcomputer is built. However, the contents may be changed
at any time by storing new data.

Before you see how this program is executed, let’s review the material
covered in this section.

1-24 MICROCOMPUTER BASICS

Self-Test Review

14. The circuit in the microprocessor that performs arithmetic and
logic operations is called the

15. The numbers that are operated upon by the microprocessor are
called

16. Before they are added together, the two numbers are in the
andthe _____ register.

17. After an arithmetic operation, the result is in the

18. The opcode is decoded when the instruction is in the
register.

19. The memory location to be read or written to is selected by the
register.

20. The address of the next instruction is normally in the

21. An 8-bit address can select any of different memory

locations.

22. The abbreviation, or memory aid, for each instruction is called a

23. The bit pattern that represents the microprocessor instruction is
called the

24. Memory that can be either read or written during routine computer
operation is called

25. An instruction is retrieved from memory and decoded during the
phase.

26. The operation indicated by the instruction is carried out during the
phase.

27. When the add instruction is executed, the sum will be in the

AN ELEMENTARY MICROCOMPUTER 1-25

28.

29.

How many memory locations are required for the following
program?

MVI A,1310
ADI 710
ADT 1010
ELT

What value will be in the accumulator after this program is
executed?

1-26 MICROCOMPUTER BASICS

EXECUTING APROGRAM

Before a program can be run, it must be placed in memory. Later, you will see
how this is done. For now, assume that the program developed in the previous
section is already loaded into memory.

The pertinent registers of the microprocessor are shown in Figure 1-12. Notice
thatthe 5-byte program thatadds 7 and1 0,,isshownin memory addresses zero
through four. The following paragraphs and drawings will take you through the
step-by-step procedure by which the computer executes this program.

M1 CROPROCESSOR

ELLTTTEY

PP S ya—— |

UNIT

(MPU) toara on ¢
. btimand CONTROLLER-| !
H SEQUENCER :
accumuator| | [] [[[T]
i [oTo[oTo[oTolo]o] Zacena NSRS
:
:

PLL LT T 11| |AReRsss, LITTT T[T] ndtiéven:
e cme e e eeeeme e e eeeaen . i
ooress | SueRYs | oECTMAL
00Cc0o 00 0011 1110 MVI A

000 0001 [0000 0171 7
000 010] 1100 Q110 AD |
0000 0071100001010 0
0000 010010111 0170 ALT
g S WP
Figure 1-12

The Program Counter is Set to the Address of the First Instruction.

To begin executing the program, the program counter must be set to the
address of the first instruction. In this case, the first instruction is in
memory location 0000 0000, so the program counter is set accordingly.
The procedure for setting the program counter to the proper address will
be discussed later.

EXECUTING A PROGRAM 1-27

The Fetch Phase

The first step in the execution of any instruction is to fetch the instruc-
tion from memory. The sequence of events that happen during the fetch
phase is controlled by the controller-sequencer. It produces a number of
control signals which will cause the events illustrated in Figures 1-13
through 1-17 to occur.

First, the contents of the program counter are transferred to the address
register as shown in Figure 1-13. Recall that this is the address of the
first instruction.

: UNIT
(MPU) {BATHMET IS
(ALU) CONTRCLLER-
SEQUENCER
accomuator| | [[[]|]|

INSTRUCT ION
DECCDER

[oloo[ol0]ofo[0] FE3sek

L S |

Lo[ofo0[0]0[0] 0] ARRTE?En LLLT 1T | aféren

[e N RN EANEssNESEEEEESSSsEsssEsemssEmEmaEEaE -
Laa

MNEMON ICS /
B INARY
ADDRESS DEC | MAL
CONTENTS | cONTENTS
D000 0000] 0011 1110 MV A
0000 0001 | 0000 0111 7
0000 0010 1100 0110 ADT
0000 001110000 1010)
0000 0100 0111 0110 ALT
e e T e N ——
Figure 1-13

The Contents of the Program Counter are Transferred to the Address Register.

1-28 MICROCOMPUTER BASICS

Once the address is safely in the address register, the program counter
is incremented by one. That is, its contents change from 0000 0000 to
0000 0001 (Figure 1-14). Notice that this does not change the contents
of the address register in any way.

ey

M I-(-J-ROLFj’Slo_IQESS-OR ;
(MPU) toaro N ¢
! (ALU) CONTROLLER-| !
H | SEQUENCER | |
l accumucator| | [1 [[T T] :

INSTRUCT ION
DECCDER

[o[ojo[ojojoo] 1] BRoRe

[oJo]o]o[o]o[o]o] AZgTEsE- LLL LT [T T Jaféirent

[resestemsnann

ADDRESS | SSinaRy. | MEREONTS/
E
CONTENTS | conTeNTS
600 0000 0011 1110 MV A
0000 000110000 011 7
0000 00101 1100 011 AD1
000 00111 0000 101 10
000 0100] 0111 01101 HLT
T e e e et i)
Figure 1-14

The Program Counter is Incremented.

EXECUTING A PROGRAM 1-29

The contents of the address register (0000 0000) are placed on the ad-
dress bus as shown in Figure 1-15. The memory circuits decode the ad-
dress to select memory location 0000 0000.

------------------- T

: M | CROPROCESSOR

1
i UNIT ARITHMET IC
(MPUW) Log1C UN T H
CONTROLLER- | 1§
: SEQUENCER i
accumutator| | [|] [[]
; [o[o[ofo[o[o[o[1] Z&rex 'NRLRER | |
i
i [0[o]o[0[0]0[0]0] ARTEREA LI LT LT] nliéhen
L. f A ;
ADDRESS
BUS
k A 0000 0000 [0011 1110 MVI A
/:ccc 0001 | 0000 _011 7
0000 00101 1100 011 AD]
0000 0011] 0000 101 0
0000 0100 0111 0110 ALT
et —— P e e
Figure 1-15

The Address of the First instruction is on the Address Bus.

1-30 MICROCOMPUTER BASICS

Next, the contents of the selected memory location are read from the
data bus into the data register. The data are on the data bus because that
address was selected by the address bus. After this operation, the MVI
Ainstruction will be in the data register as shown in Figure 1-16.

M1 CROPROCESSOR

k]
UNTT
; (MPU) BeTR IS E
: sl CONTROLLER- ;
: SEQUENCER H
5 1
1 1
1 1
accumutator | | [[[[[T7] :
i [oloJofo[o[olo] 1] Zagsaa NEEEL |
H

| S

[olo[o]ofo[o[o]o] ACSress. OlO[11 1] 1] /O] rédiErer
- aopress /. T
BUS

MEMORY

MNEMON I CS/
BINARY
ADDRESS DECIMAL
CONTENTS | CONTENTS
000 000 0011 _1110 MVI A
000 01] 0000 011 7
0000 _ 0010 1100 0110 AD|
00 0011 0000 101 10
[0000 0i00[0111 0110 HLT
M“M—%M’\.
Figure 1-16

The Opcode for the First instruction is put into the data register.

EXECUTING A PROGRAM 1-31

The next step is to decode the instruction (Figure 1-17). The opcode is
transferred to the instruction decoder. This circuit recognizes that the
opcode is that of an MVI A instruction. It informs the controller-sequen-
cer of this fact and the controller-sequencer produces the necessary con-
trol pulses to carry out the instruction. This completes the fetch phase
of the first instruction.

[ittt -

EM!CHOSS?_?ESSOH I I I I :
(MPU) i He IRl

- LLLD CONTROLLER- | i
H SEQUENCER

b o [TTTTTTT] S % :
: 2R .
i [oo[oTolo]olo] 1] assa INSTRUCT 1O

i [oJooJo[o]o]o]o] APRress. [Olo[1 [T 1[1]0] a2 er |

MEMORY

MNEMON 1CS /
ADDRESS | oonTorTs DEC | MAL

CONTENTS

000 0000 0011 111 MVI A
0 001 | 0000 01 7
0000 0010} 1100 01 AD 1
000 011} 0000 1010 10
0000 0100 [0111 0110 HLT

e e

Figure 1-17
The Opcode is Decoded.

1-32 MICROCOMPUTER BASICS

The Execute Phase

The first instruction was fetched from memory and decoded during the
fetch phase. The MPU now "knows" that this is an MVI A instruction.
During the execute phase it must carry out this instruction by reading
out the next byte of memory and placing it in the accumulator.

The first stepis to transfer the address of the next byte from the program
counter to the address register (Figure 1-18). You will recall that the
program counter was incremented to the proper address (0000 0001)
during the previous fetch phase. Notice, too, that the MPU cannot change
the address register until the previous byte from memory is latched into
the data register. The key to the operation of any MPU is the timing, or
coordinating, of its events. '

| Sttt DL D DD L L L DT T

: MI CROPROCESSOR
: UNIT

emessenanand

(MPU) tosIc onI T
' bt CONTROL LER- '
: SEQUENCER :
: 1
L
accumuiator| | | | [[T 1]
H

[o]o[o]o]o]ofo 1] Baosaam INSTRUCT IO

[OIOTOTOIOTOTOTT] Age7sse [OIOTIATTITITTO] lthen

s eSS, 4

Frescnaans

MNEMONICS/
B 1 NARY
ADDRESS DECIMAL

CONTENTS CONTENTS
0000 0000 0011 111 MVI A
0000 0001] 0000 011 7
0000 0010 [1100 011 AD |
0000 CO11] 0000 1010 10
0000 0100] 01711 0110 HLT
e —]

Figure 1-18

The Contents of the Program Counter are Transferred to the Address Register.

EXECUTING A PROGRAM 1-33

The next operation is shown in Figure 1-19. The program counter is in-
cremented to 0000 0010 in anticipation of the next fetch phase. Notice
that the address from the address register is shown on the address bus.

- T T T T

mmmmeean.

{ M1 CROPROGE SSOR
(MPU) 136TEENG
: il CONTROLLER-| |
: SEQUENCER :
E accumutator [| | [[[[]} f
} [O[oToTo[o[oTTT0] BaeRees "B |

iIOIOlolololololT'SE%T??ER [6[0[1|1[1li!1lO|H§££$ER
[

- - = -

ADDRESS
BUS

MNEMON I CS /
BINARY
ADDRESS DEC IMAL
CONTENTS | CONTENTS
0000 0000 [0011 111 MVI A
0000 0001 10000 011 7
0000 O 01100 11 AD |
0000 001110000 1010 10
0000 01001 0111 0110 ALT
S P,
Figure 1-19

The Program Counter is incremented and the Contents
of the Address Register is on the Address Bus.

1-34 MICROCOMPUTER BASICS

The address is decoded and the contents of memory location 0000 0001
are loaded into the data register as shown in Figure 1-20. Recall that this
is the number seven. Just as the opcode was immediately available to
the instruction decoder, this operand is immediately transferred to the
accumulator. Thus, the first execute phase ends with the number 7 in

the accumulator.

-
u
"
.
.

u
(MPU)

CE LT T T T T ey,

cmcmansmssns

MICROPROCESSOR
NIT

[olo]ojojofo] 1]

[o]olofolo]o]o]1]

accumuLator [0/0/0]0]0] 1]1]1]

6]PROGHAM

COUNTER

ADDRESS

REGISTER

CONTROLLER-
SEQUENCER

INSTRUCT ION
DECODER

MNEMON | CS/
B I NARY
ADDRESS DEC |MAL
CONTENTS CONTENTS
00 0000 0011 111 MV A
0000_0001] 0000 01 7
0000 1100 01 AD|
0000 1] 0000 10 0
0000 100 0111 1 HLT
g S N
Figure 1-20

ojojolofof 1] 1] 1] nédv&

EGISTER

——————
.

LY

The First Operand is Transferred to the Accumulator Via the Data Register.

Fetching the Add Instruction

The next instruction in our program is the ADI instruction. It is fetched
from memory using the same procedure that was used for fetching the
MVI A instruction. Figure 1-21 illustrates this. The five significant

events are as follows:

EXECUTING A PROGRAM 1-35

1. The contents of the program counter (0000 0010) are transferred to
the address register.

2. The program counter is incremented to 0000 0011.
3. The address is on the address bus.

v
[o]o]oo]ofo]1]1] RAoSRAM

4. The contents of the selected memory location are transferred to the
data register.
51 The contents of the data register are decoded by the instruction
decoder.
{ M| CROPROCESSOR]‘ T] ?
: UNIT ARITHMET IC :
: (MPU) LOGIC UNIT :
; Lk CONTROLLER- :
: SEQUENCER i
: accumuLator [0/0]0[0[0] 1]1]1] h AI) 7 g
AN '
@ INSTRUCT |ON
DECODER -

PR T e pa e

5

[ojo[ojojo]o] 1]o] ADgress, [1[1]o]o]o[1]1]0] a2 dren
DATA
. ADESSESS . \ BUS

®

aoDRESS | SBUNARY | MR SS
CONTENTS | ~2ETENTE
0000 0000] 00711 111 MV A
0000 0001 | 0000 011 /
0000 0010 1100 011 AD
V 0000 _0011] 0000 101 10
0000 0100 0111 0110 ALT
i
Figure 1-21
Fetching the ADI Instruction.

The data word fetched from memory is the opcode for the ADI instrue-
tion. Therefore, the controller-sequencer produces the necessary control
pulses to execute this instruction.

1-36 MICROCOMPUTER BASICS

Executing the ADI Instruction.

The execution of the ADI instruction is a five step procedure. This pro-
cedure is illustrated in Figure 1-22.

1.

The contents of the program counter (0000 0011) are transferred to
the address register, which places it on the address bus.

The program counter is incremented to 0000 0100 in anticipation of
the next fetch phase.

The operand is read from the data bus into the data register.

The ALU combines the values from the accumulator and the data
register.

The sum from the ALU is placed into the accumulator, replacing the
number (7) that was previously stored there.

The computation portion of this program ends with the sum of the two
numbers in the accumulator. However, the program is not finished until
it tells the computer to stop executing instructions.

.
.
.
"
»
i
1
H
.
.

M1 CROPROCESSOR
UNIT (AR 1 ThM

(MPU) oa e E
(ALU) _1 3

z @ E CONTROLLER- '

SEQUENCER H

ACCUMULATOR |90010001 .

@ INSTRUCT ION :

H "V DECODER E
[ofojo]o]o]o] 1] 1] 2agsham C) :
[ololo[o]ofo[1] 1] ASgress. [o[o]o[o] 1[0[1]0] rren

ADDRESS
BUS

@

MEMORY

MNEMON 1 CS/
B I NARY
rooness | Bl | SRS

000 00001 0211 1110 MVI A
000 0001 | 0000 0111 7
O 001011100 0110 AD1
0 0011 0000 1010 10
0000 100| 0111 0110 HLT
e ——

Figure 1-22
Executing the ADI Instruction

EXECUTING A PROGRAM 1-37

Fetching and Executing the HLT Instruction.

The final instruction in the program is an HLT instruction. It is fetched
using the same fetch procedure as before. The four steps are illustrated
in Figure 1-23.

S The address from the program counter is put on the bus via the
address register.

2. The program counter is incremented.

3. The contents of memory address 0000 0100 is read into the data
register from the data bus.

4. The HLT opcode is translated by the instruction decoder.
5. TheMPU halts.

L]
(]
]
1
1
.
(]
1
¥
]
»
]
[
(]
1]
L]
[
1
]
1
L]
[}
i
[]
t
[
1
1
]
1
1
[
1
[]

M1 CROPROCESSOR

- 1
e [NN,
i ol CONTROLLER- :
E SEQUENCER :
i accumuLaTor [0/0]0]1]0[0]0] 1] QHIT# i
i AR :
: @ INSTRUCT I ON

v DECODER E

[ojojo[o]o] 1]o] 1] B3R

[o]ojojo[o] 1]0[0] APRRESE,

ADDRESS
BUS

O

o[1] 1]1]0] 1] 1]0] aééiéren

ccscsnmunn

[rresssssssssssessssmmmaana.

MEMORY

MNEMON ICS/
BINARY
ADDRESS DEGIMAL
CONTENTS | CoNTENTS
0000 0000 | 0011 1110 MV _A
0000 0001 | 0000 0111 7
000 0010 [1100 0110 AD |
0000 0011] 0000 1010 10
0000 0100 0111 0110 ALT
M et ——)
Figure 1-23

Executing the HLT instruction.

1-38 MICROCOMPUTER BASICS

In some microprocessors, the execution of the HLT instruction places the
computer in a low power consumption or wait mode. The controller-se-
quencer then stops producing control signals. Consequently, the com-
puter operations stop. Notice that the program has accomplished its
objective of adding 7 and 1010. The resulting sum, 1710, is in the ac-
cumulator.

Self-Test Review

Examine this sample program carefully, assume it starts at address 8018,
refer to the previous pages, and answer the following questions:

30.

31.

32.

33.

35.

36.

37.
38.
39.

MVI A9
ADI 3
ADI 5
HLT

During the first fetch phase, what binary number is loaded into the
data register? _ _ __ ___ _

At the end of the first execute phase, the number 0000 1001 will be
in the and the register.

During the second fetch phase, what binary number is loaded into
the data register?

If the first byte of the program is in address 8016, what is the
address of the second operand? _ _ __ __ __

How many bytes does the program occupy?

What number is in the program counter at the end of the second
fetch phase?

When the program is finished running, what number will be in the
accumulator? _ _ __ __ _ _
What is the final number in the program counter? _ ___ __
What is the final value of the address register? _ _ _ _ _ _ _ _

What is the final value in the data register? __ _ _ __ _ _

UNIT SUMMARY 1-39

10.

11.

12.

13.

14.

15.

UNIT SUMMARY

A microprocessor is a logic device that is used in digital electronic
systemis.

The microprocessor is the “brains” of the microcomputer. It
performs arithmetic, logic, and control operations.

The microcomputer is composed of a microprocessor, RAM,
ROM, a clock, and an I/O interface.

Parallel conductors within the microcomputer that carry address
and data information are called buses.

The microcomputer communicates with the “outside world”
through one or more I/O ports.

The operation of the microprocessor is controlled by a list of
instructions called a program.

One who writes these instructions is called a programmer.

The computer program is stored so that it can be used when it is
needed to perform an operation. This is known as the stored
program concept.

A bit is a binary digit. It can have only a value of 1 or 0.
A byte is a group of 8 bits.

A byte pattern can represent any one of 256,, unique values,
including: signed numbers from —128 to +127, unsigned numbers
from O to 255, or the 128 characters and operations defined by
ASCII plus 128 other selected characters.

A computer word is the fundamental unit of information used in a
the computer. Current usage has given the word a length of
sixteen bits.

Sixteen bits can represent 65 1936,, unique values.
Microprocessors are known by the number of bits in their regis-
ters and on their data buses. For example, a microprocessor with

a 16-bit data bus is called a 16-bit microprocessor.

Most microprocessors have buses and registers that are 8-bits
long or multiples of 8-bits.

1-40 MICROCOMPUTER BASICS

16.

17.

18.

=19,

20.

21.
—22.

— 23.

— 25.

26.

27.

In a 16-bit word, the byte representing the values from 2° through
2"is called the low byte, and the byte representing the values from
28 through 2% is called the high byte.

The bits in a word are numbered from 0 to 15 according to the
value they represent in an unsigned number. In other words, the
bit representing 2° is bit 0 and the bit representing 27 is called bit 7.

The microprocessor (MPU) contains many specialized circuits.
These include the data register, the instruction decoder, the
controller-sequencer, the arithmetic logic unit (ALU), the program
counter, the address register, and the accumulator.

The ALU pefforms arithmetic or logic operations on the data
supplied to the MPU. The data supplied to the ALU are called

— operands.

The accumulator is a specialized register that performs two
functions. First it holds one of the operands prior to an ALU
operation. Second, it receives the result of an ALU operation.

Specific MPU instructions load data into the various MPU regis-
ters, operate on that data, and send data out of the MPU.

The data register is a temporary storage location for data going to
or coming from the data bus.

The address register is a temporary storage location that controls
the address bus. You select a memory location or /O port by
putting its address in the address register.

The program counter controls the sequence of instructions in a
program. It is incremented after each memory operation, and
contains the address of the next memory location to be accessed.

The instruction decoder translates the opcode in the data register
and directs the operation of the controller-sequencer.

The controller-sequencer determines the sequence of events
necessary to complete the operation described by the instruction
decoder. '

Memory is a series of storage locations outside the MPU. If the
MPU is an 8-bit device, each memory location typically stores one

byte.

UNIT SUMMARY 1-41

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Each memory location is identified by a unique address.

Memory is connected to the MPU by an address bus, a data bus,
and at least one control line (read/write).

Reading the contents of memory does not alter the contents of that
address. This is known as nondestructive read out (NDRO).

Memory that can be both read and written to during normal
computer operations is called random access memory, or RAM.

Memory that can only be read (not written) is called read only
memory, or ROM.

When executing a program, the MPU goes through a fundamental
sequence of steps or phases called the fetch-execute sequence.

In the fetch phase, the MPU reads and decodes the opcode in
memory. This time is the same for all types of instructions.

During the execute phase, the MPU performs the operation
described by the instruction. This time will vary depending on
the operation performed.

A mnemonic is a memory aid, or abbreviation. Mnemonics are used
by programmers to identify the opcodes and operands.

The opcode is the binary pattern that determines the operation the
MPU will perform. Each opcode has at least one related
mnemonic.

An operand is the data the instruction is to use. Operands may be
in registers or memory when the instruction begins execution.
The result of an operation is NOT an operand.

1-42 MICROCOMPUTER BASICS

EXPERIMENTS

Perform Experiments 1 and 2.

Unit 2

MICROPROCESSOR
ARCHITECTURE

~ 2-2 MICROPROCESSOR ARCHITECTURE

INTRODUCTION
UNITOBJECTIVES

The Registers
INSTRUCTIONSET

Add L.

Logical AND.
Logical OR

DAAandCMA

UNITSUMMARY

INTRODUCTION 2-3

INTRODUCTION

Now that you understand the basic concepts of microprocessors and computer
systems, let’s take a look at the 8085 used in the EWS-8085 Trainer System. In this
unit you will learn what registers the 8085 contains, how they are related to each
other, and how to read an instruction set table.

As you learned in Unit 1, the 8085 is a member of the Intel© family of 8080 related
microprocessors. This means that its basic architecture is similar to the 8080, the
8088, the 8086, the 80286, the 80386, and the 80486.

For those of you who are familiar with the Motorola® family of microprocessors,
such as the 6800, working with the 8085 will require a new way of thinking. For
example; the addressing modes are slightly different. Pairs of data bytes are stored
in memory in reverse order (low byte in the low address). The interrupt vectors are
in low memory instead of high memory.

If you are learning about microprocessors for the first time, don’t let this talk
discourage you. While it is true that different manufacturers have different ways of
doing things, the principles involved are similar, and the specific instruction set for
the particular microprocessor you are working with is all that’s important.

This course is about the 8085, and you will understand the 8085 when you complete
the course. This unit gives you the fundamentals of the 8085. These are important
because you cannot understand the units that follow if you don’t understand the
fundamentals.

2-4 MICROPROCESSOR ARCHITECTURE

UNIT OBJECTIVES

When you complete this unit you will be able to:

1. Identify the registers in the 8085, by size, function, and their
relationship to each other and the outside world.

2 Draw a block diagram of the 8085 MPU.

3. Given an instruction mnemonic and a table of opcodes, look up the
corresponding opcode.

4. Explain the relationship between the accumulator and the flag
register.

5. List and identify the flags in the 8085.
6. List the register pairs in the 8085.

ARCHITECTURE OF THE 8085 MPU 2-5

ARCHITECTURE OF THE 8085 MPU

In computer terminology, the word architecture is used to describe the
computer’s style of construction, its register size and arrangement, its
bus configuration, its operating speed, and the access to and by the out-
side world. The architecture of our hypothetical microprocessor is shown
again in Figure 2-1. By the end of this unit, you will be working with
block diagrams of the 8085. But, we are using this unit again here be-
cause of its simplified architecture, and to make the transition to the real

thing.

:

MICROPROCEESOR UNIT I—c e
(MPU)
ARITHMETIC
Loaic UNIT K
(ALU) FETCH EXECUTE
CONTROL CONTROL
CARRY CONTROLLER- [e— OCLOCK
redisrer [M I T T T T] T e OTROLER: B A
ACCUMULATOR ‘—.‘ L INES
.
PROGRAM :
ol INSTRUCT ION
HERERERN
DECODER
: Umness {7
: REGISTER
LI TP T] J=e LI T T Tl 1]=e
DATA
A REGISTER
N
H
256 BYTES OF | AN
P [-
ADDRESS__ DATA
BUS " BUS
INPUT -QUTPUT <::
110
e
Figure 2-1

Architecture of the hypothetical microcomputer.
Figure 2-1 illustrates the two important architecture considerations for
you as a programmer. First, what registers are there. Second, which
registers are linked to which other registers.

2-6 MICROPROCESSOR ARCHITECTURE

You do not need to concern yourself with the control lines, because they
only cause things to happen in response to the opcodes, they are not paths
for data.

Let’s examine the paths in this hypothetical unit. This discussion deals
with each register and circuit as seven elements in no particular order.
The first element is the accumulator, which can receive input from two
sources; the ALU and the data register. The second element, the ALU,
receives input from the Data Register, the Accumulator, and the Flags
(N, Z, V, and C). What, you may ask, are the Flags? The Flags can be
thought of as individual registers that reflect the outcome of the last
math or logic operation. You will learn about each one later in this unit.
For now, you can think of them as a special register that is linked to the
ALU, the accumulator, the data register, and the controller-sequencer -
- that makes the flags the third element. The fourth element is the
program counter. It receives input from the data register, or from
memory. Number five, the address register, receives input from the data
register, memory, or the program counter. Sixth, the data register gets
input from the accumulator, flags, or memory. But, as you can see, the
data register can feed any of the other registers. This makes it the most
used register, and the second most critical circuit in the microprocessor.
The instruction decoder, which only feeds the controller-sequencer,
receives its input only from the data register. Finally, the controller se-
quencer gets its input from the instruction decoder, the clock and exter-
nal control lines, and the flag register. The controller-sequencer controls
the operation of every registerin the MPU, which makes it the most criti-
cal circuit.

Compare the hypothetical microprocessor (inside the dotted lines in
Figure 2-1) to the block diagram of the 8085A shown in Figure 2-2. Notice
these elements that are the same: the accumulator, the flags, the ALU,
the instruction decoder, the program counter, the address (buffer)
register, and the timing and control circuit (which is the same as the con-
troller-sequencer). The data register in our hypothetical MPU is replaced
by the dual purpose data/address buffer. In addition, you see an inter-
rupt control circuit, a serial I/O control, a temporary register, an instruc-
tion register, a stack pointer, an incrementer/decrementer address latch,
as well as registers identified as B,C,D,E, H, and L.

ARCHITECTURE OF THE 8085 MPU 2-7

TRTR RST 6.5 TRAP
lNiTFl T HST15.5 135117.51 SiD SOD
[INTERRUPT CONTROL] i SERIAL |/0 CONTROL |
B-BIT INTERNAL DATA BUS
3 - F —
Ly Lr Le.d
ACCUMULATOR FLAG (51 || [TNSTRUCTION
(8) REG| STER REGISTER(8) _
! B8 (8) c_ (&)
TEMP. REG. M REG. REG.
D (8) E_(8)
INSTRUCT ION REG, REG.
DECODER H (8) L 8l
AND REG. REG. | RegisTER
MACH! NE STACK POINTER (18)
ENCOD I NG 187
PROGRAM COUNTER
I NCREMENTER / DECREMENTER
- sy ADDRESS LATCH _(16)]
SUPPLY | —= GND L
&4
, ADDRESS BUFFER “”I
TIMING AND CONTROL l 1l

8]
LDATAIAMRESS BUFFER B—|

X1—s CLK RESET
X2—— GEN con'r?ot. sr.ewu_s1 DMAI S—]
CLK wTI FOWR ALE SO St 10/M] HLDA RESET OUT A15-A8 AD7 ~ADO
READY HOLD TESETTR ADDRESE BUS ADDRESS/DATA BUS
Figure 2-2

Block diagram of the 8085 microprocessor.

Beside the name of each register is a number in parentheses, which in-
dicates the number of bits in that register. For example, the accumulator
has 8 bits, the flag register has only 5 bits, and the program counter has
16 bits.

registers and how they interact. The primary purpose of this course is to

During the remainder of this section, you will learn about all of these
<leach you the instructions that control data flow through the MPU.

The Registers

Perhaps the most interesting feature of the 8085 is the group of registers
identified as the register array. Although all of these registers have
special operations associated with them, the letter designated registers
B,C,D,E, H, and L are considered general purpose registers. These can
be used for certain math operations, as well as serving as pointers to
memory addresses. The stack pointeris always a special purpose register
that points to a location in memory. You will learn all about the stack
operations that use this register in Unit 5.

2-8 MICROPROCESSOR ARCHITECTURE

The 8085 has many instructions that allow you to perform operations on the data
in these nine registers. Included are instructions that exchange, copy, and compare
their contents. In addition, six of the 8-bit registers are paired to form three 16-bit
registers. As implied by the figure, the pairs are BC, DE, and HL. The limited math
operations you can perform on these registers make them much less than accumu-
lators, but still more powerful than data registers. The incrementer/decrementer
address latch instruction allows you to increase or decrease the value in these
registers.

For convenience, the Accumulator is also referred to as the A register. This allows
a great amount of similarity in the mnemonics. For example, in Unit 1 you saw how
the MVI A instruction placed a value in the accumulator. There are also MVI
instructions to place values in the B, C, D, E, H, and L registers.

The accumulator and flag register are also paired to form the processor status
word, or PSW. Special instructions allow you to exchange the PSW with other
registers. :

As shown by the arrows in Figure 2-2, data flow in the 8085 is quite similar to the
hypothetical microprocessor. The address buffer controls the high byte of the
address bus, the data/address buffer controls the low byte of the address bus as well
as sending and receiving data. This dual purpose architecture requires a circuit
outside the MPU to hold the low byte of the address bus so that the data\address
buffer can be used to send or receive data. This is also why the MPU has an
instruction register and a temporary register to hold one operand for the ALU. Both
of these registers are automatic in their operation. As a programmer, you do not
need to access either the instruction register or the temporary register.

Tomake it easier to visualize the registers as you are writing programs, the registers
are usually pictured as shown in Figure 2-3. Only the registers that are programmer
accessible are shown. Because the accumulator and the flags can be combined to
form the PSW, they are shown side-by-side. The bit positions of the flags are
identified so that you can easily identify them. In addition, the RIM and SIM values
for the accumulator are shown.

ARCHITECTURE OF THE 8085 MPU

2-9

You will learn about RIM and SIM later, in the unit on interrupts. For now,
however, you should know that the flags are named sign (S), zero (Z), auxiliary
carry (A or AC), parity (P), and carry (C or CY). They will come up periodically
during the discussion, and their value will be revealed as you learn about the other
instructions. Be careful not to confuse the A flag with the accumulator, which is
often called the A register. Similarly, the C flag (carry) should not be confused with
the C register.

Locate the similar parts of Figure 2-3 on your programmer’s reference card. As you
write programs, you will want to refer to this card and these figures regularly. Keep
your programmer’s reference card handy, you will want to refer to it as you
continue this section.

THE A REGISTER BEFORE EXECUTING SiM PSW
D7 Do I . 1
[sco[soE| X | A7 |sMsE| m7.5[me5 [ms.5 | [Arec.® | rFiacs@ |
RST 5.5 MASK
RST 6.5 MASK
Al BREG.(8) | CREG.(8)
MASK SET ENABLE DREG.(8) | EREG.(8)
RESET RST 7.5
H REG. L
retidl REG.(8) | LREG.(8)
SOD ENABLE PROGRAM COUNTER (16)
IS e T G STACK POINTER (16)
THE A REGISTER AFTER EXECUTING RIM FLAG BYTE
o7 DO D7 Do
|so[ms]wes5[155] E [M75[mes]ms5] Islz|x|alx]e]xTer
[- J L J 3
CARRY
L INTERRUPT MASKS PARITY
INTERRUPT ENABLE FLAG —— — AUX. CARRY
INTERRUPT PENDING ZERO
SERIAL INPUT DATA SIGN

Figure 2-3
Programming model for the 8085.

2-10 MICROPROCESSOR ARCHITECTURE

ci

loo

INSTRUCTION SET

The key to accessing these registers and the power of the 8085 is the in-
struction set. Figure 2-4 is a list of the instructions for the 8085. Here,
they are listed in a matrix that shows the instruction associated with
each of the 256 opcodes. The hexadecimal numbers along the left side
represent the high nibble of the opcode. The hexadecimal numbers across
the top provide the low nibble, For example, the opcode for RIM is 2016.
Notice that 10 of the opcodes are not used. This leaves 246 usable op-
codes. As the course proceeds, you will see them listed in other ways. At
this time, you are not expected to remember all these mnemonics,or even
to recognize them. What you should notice, is that they are grouped on

the chart.
0 [1 2 3 4 5 6 7
0] NOP LXiBdbi | STAXB INXB INR B DCRB MVIBbyte |RLC
£l LXID.dbl |STAXD INX D INRD DCRD MVIDbyte [RAL
2[RIM LXIHdbi [SHLDadr |INXH NR H DCRH MVIHbyte |DAA
3[SM LXISPdol | STAadr INX SP NR M DCRM MVIMbyte |STC
4 MOVBB [MOVBC [MOVBD [MOVBE |MOVBH |MOVBL _[MOVEBM |MOVBA
SIMOVDB [MOVDC _IMOVDD |MOVDE |MOVDH |MOVDL _|MOVDM [MOVDA
6|MOVHB IMOVHC [MOVHD [MOVHE [MOVHH |MOVHL _|MOVHM [MOV HA
7|MOVMB |MOVMC [MOVMD [MOVME |[MOVMH [MOVML [HLT " [MOVMA |
8|ADDB _|ADDC ADD D ADDE ADD H ADD L ADD M ADD A
9/SUBB [SUBC SUBD SUBE SUBH SUBL SUBM___ |SUBA
A[ANAB_JANAC ANAD ANAE ANAH ANAL ANAM ANAA
[B[ORAB_ |ORAC ORAD ORAE ORAH ORAL ORAM ORAA
C|RNZ POPB JINZ adr JMP adr CNZ adr PUSHB AD| byte RSTO
[D[RNC POPD JNG adr OUTport |CNCadr PUSHD SUlbyte |RST?2
[E]RPO POPH JPO adr XTHL CPO adr PUSHH ANI byte RST 4
F|RP POPPSW__ [JPadr DI CP adr PUSHPSW [ORibyle JRST6 |
8) A B N D E F
0 DAD B LDAX B DCXB INRC DCRC MVICtyte |RRC |
1 DAD D LDAX D DCXD INRE DCRE MVIEbyle |RAR
2 DAD H LHLDadr |DCXH INRL DCR L MViLbyte |CMA
: DAD SP LDAadr DCX SP INRA DCRA MVIAbyte |CMC
4]MOVCB [MOVCC _[MOVCD |MOVCE |MOVGH [MOVCL [Wov CM_ |MOVCA
S|MOVEB [MOVEC JMOVED [MOVEE |MOVEH |MOVEL MOV EM_ |MOVEA
§IMOVLE IMOVLC [MOVLD [MOVLE |MOVLH |MOVLL _[MOVLM |MOVLA
[7]MOVAB TMOVAC MOVAD [MOVAE JMOVAH [MOVAL _ [MOVAM _[MOVAA
8|ADCE |ADCC ADC D ADCE ADG H ADGL ADC M ADC A
[9]SBBB__[SBBC SBBD SBBE SBBH SBBL SBBM SBBA
[A[XRAB__[XRAC XRAD XRAE XRAH XRAL XRAM XRAA
[B]|CMPB__[CMPC CMPD CMPE [CMPH ___[CMPL____ [CMP M CMPA
[C]Rz RET JZ adr CZ adr CAlLadr _[ACibyle |RST1
[D[RC_ JC adr IN port CC adr SBI byte RST 3
E |RPE PCHL JPE acr XCHG CPE adr XRI byte RST5
F|RM SPHL M adr El CM adr CPl byte RST7
Figure 2-4

8085 Microprocessor Instruction Set.

INSTRUCTION SET 2-11

For example, the block of opcodes from 40, , to 7F, ; are all move (MOV)
instructions, except the HLT instruction, 76,,, which occupies the spot
that might logically have been MOV M,M. It helps to look at the binary
values to see how the opcodes are structured. The MOV instructions all
have the pattern 0lxx xxxx,, where the x values may vary. Further
examination shows that bits 3 through 6 designate the letter before the
comma and bits 0 through 2 designate the letter after the comma. This is
easiest to observe in the low three bits because the moves in columns 96
(1001) and 1,;(0001) all end in the letter C. Not so easily observed is that
the same 001 pattern in bits 6, 5, and 4 also designates the letter C in
opcodes 48, ; through 4F, ..

To see the similarities in the opcodes, you compare the values that are
common. In the previous example, the MOV instructions have a first
nibble of 0100, 0101, 0110, or 0111. In every case the first bit is a 0 and
the second bit is a 1, which means the pattern is 01xx. The bits in the
second nibble can be any of the sixteen possible patterns, so that has a
pattern of xxxx.

Let’s look at some of the other groups of opcodes and see how they are
alike, and yet different. Notice the opcodes with the RST mnemonics (C7
to F7 and CF to FF). These all have the form 11xx x111,. The first nibble
isC, D, E, or F—all have the first two bits as 1s. The second nibble is either
7 or F, both of which have the last three bits as 1s. Now look at the INR
instructions in columns 4 and C. You should see that these all have the
following bit pattern, Oxxx x100,. From your knowledge of digital circuits,
you should observe that these patterns can be decoded by AND and OR
gates torecognize these opcodes when they are in the instruction register.
This is significant, because it is exactly how the MPU decides what the
opcode is.

On your programmer’s reference card the opcodes are divided into four
groups: data transfer, arithmetic and logic, branch control, and I/O and
Machine control. For this course, we have regrouped the last two catego-
ries and diverted two special arithmetic and logic opcodes. As aresult, you
will learn the opcodes in five categories: arithmetic and logic, data
transfer (addressing modes), jumps and condition codes, stack opera-
tions, and I/O and interrupts.

2-12 MICROPROCESSOR ARCHITECTURE

Self-Test Review

1. Refer to Figure 2-4. What is the common pattern for the POP
and PUSH opcodes? _ _ _ _ _ _ _ _

2. Again looking at the POP and PUSH opcodes, bit 2 is a 1 for
the opcodes and a 0 for the opcodes.

3. The ,or _ _ _,is a two-byte regis-
ter formed by a combination of the accumulator and the flag
register.

4, In the 8085 the B, C, D, E, H, L, Stack Pointer, Program
counter, and increment/decrement address latch form the

5. Opcodes with the pattern 10xx x001 all contain the designation
for the ____ register in their mnemonic.

6. In the 8085, the ALU gets its input from the_ | the

register, and the

7. The 8085 instruction decoder decodes the opcode in the
register.

8. The 8085 has four register pairs, that are designated 2 ¢,
DNE, HL, and PSW.

9. The low byte of the 8085 address bus is controlled by the

buffer.

10. The high byte of the 8085 address bus is controlled by the

buffer.

ARITHMETIC INSTRUCTIONS 2-13

ARITHMETIC INSTRUCTIONS

The 8085’s arithmetic opcodes are discussed in five categories: add, sub-
tract, increment, decrement, and special. Excepting the special instruc-
tions, these opcodes do simple addition or subtraction. In addition to
discussing the arithmetic operations, you will also learn about the carry
flag. The other flags are discussed in Unit 4. In general, the flags are af-
fected by the results of arithmetic and logic operations but not by any
other operations. This is very important, because you may want to per-
form other operations before the conditional operation based on the flags.
You must know which instructions affect the flags, and which ones do
not. As you read about each instruction, be sure to note which flags are
affected. On your programmer’s reference card you should notice the
asterisk (* or **) and crosses (}). There are corresponding notes that in-
dicate which instructions affect all flags, which affect all except the carry
flag, and which affect only the carry flag.

Add

Most of the add instructions increase the value of the accumulator. The
increment instructions, which are also in this category have the ability
to add one (1) to any specific register or a location in memory. The double
add instruction affects the HL register pair. There are seven add instruc-
tions. They have the following mnemonics and affects on the flags:

Mnemonic Flag Impact

ADI all flags affected
ADD all flags affected
ACI all flags affected
ADC all flags affected
INR all except CARRY affected
INX no flags affected

DAD only CARRY affected

2-14 MICROPROCESSOR ARCHITECTURE

Before considering the addition of bytes or words, let’s review the addi-
tion of individual bits. Naturally, 0 plus 0 is 0. 1 plus 0 or 0 plus1is 1. If
both bits are 1, the result is 0 with a carry of 1 to the next level. Because
of the carry generated by two ones, you must also consider the sum of
three bits, the two previously considered and the carry from the next
lower order. If any of the bits is zero, the addition is just like two bits
ignoring the zero. But, if all three bits are 1’s, the result is not only the
carry to the next level, but a one in that position created by the other two
ones. Here is a summary of the rules.

1. 0+40=0

2. 0+1=1

3. 1+1=0 with a carry of 1.
4. 1+1+1=1 with a carry of 1.

The ADI and ADD instructions add a byte to the accumulator. This is the
addition of two binary numbers, so the only other consideration is if a
carry is generated. In the binary addition of two bytes, you cannot have
more than a carry of one. Consider the following examples.

carry 11111 111 11111 111 11111 111
0101 0101 1111 1111 1111 1111

#1010 10131 +1111 1111 #0000 0001

total 10000 0000 11111 1110 10000 0000

In each of these examples, the combination of bits at each level generate
a carry to the next level. Only in the center example did the total contain
ones in the intermediate positions. The carry to the eighth position is
sent to the carry flag, because there is no room for it in the byte. As a
result, each of these examples would leave a 1 in the carry flag. This is
fine if you only wish to add two single byte values, but to combine two or
more bytes for a result, you typically add the low order bytes and then
add the others, working your way to the most si gnificant byte. To
accommodate this string of additions, you need to consider the carry from
the lower byte when you perform the addition. This is the reason for the
ACT and ADC opcodes.

ARITHMETIC INSTRUCTIONS 2-15

These opcodes add with the carry. In other words, for the 0 bit in that byte,
the carry bit is also added. Thus, if there was a carry from the previous
arithmetic operation, the low bit in this operation will include that carry.
However, you must consider that ADD, ADI, ADC, and ACI all place their
result in the accumulator. To use a series of these operations, you would
have to store the result of each operation and load a new byte into the
accumulator before the next addition. As mentioned earlier, the mathemati-
cal operations affect the flags, but the transfer instructions do not. There-
fore, your transfers between additions will not change the value of the carry
flag from the last addition.

You know that the results of the addition are placed in the accumulator, but
where does the other operand come from? Since you remember the block
diagram of the 8085 MPU, you probably answered “the temporary regis-
ter.” However, as you may also recall, the temporary register is not shown
in Figure 2-3, the programming model. The temporary register is loaded
automatically with the operand specified in the add instruction. If the
opcode is ADI or ACI, the value to be added is obtained from the byte of
memory immediately after the add opcode. For the ADD and ADC instruc-
tions, the source for the temporary register value may be any of the 8-bit
registers or the contents of memory at address M. However, you cannot add
the flag register. Thus, you can specify the ADD or ADC instructions with
any of the following:

Mnemonic Opcode Action

ADD A 87 A+A=>A
ADCA 8F A+A+cy=>A

ADD B 80 A+B=>A
ADCB 88 A+B+cy=>A
ADDC 81 A+C=>A

ADCC 89 A+C+cy=>A
ADDD 82 A+D=>A

ADCD 8A A+D+cy=>A
ADDE 83 A+E=>A
ADCE 8B A+E+cy=>A

ADD H 84 A+H=>A
ADCH 8C A+H+cy=A

ADD L 85 A+L=>A
ADCL 8D A+L+cy=>A
ADDM 86 A+M=>A

ADCM 8E A+M+cy=>A

2-16 MICROPROCESSOR ARCHITECTURE

For convenience, the notations ADD r and ADC r are used. The r indi-
cates you can specify one of the 8-bit registers. Notice that these all have
the opcode pattern 1000 xxxx2 (8x16). Further, bit 3 determines the ef-
fect of the carry flag. If bit 3is a 1, the carry flag is considered. Ifbit 3 is
0, the carry flag has no effect. Also from the opcodes, it is easy to derive

the following chart.
Register Binary pattern
for bits
— 210
A 111
B 000
c 001
D 010
E 011
H 100
L 101
M 110

These patterns are common to all instructions that affect the 8-bit
registers in the 8085. This is why the columns and rows in the opcode
table have the common pattern you saw earlier. Look for these patterns
as you learn about the other opcodes.

It is easy to understand the meaning of registers A through L, but what
about M? The description above indicates that it means memory. But
which memory? This is a very important feature of the 8085 microproces-
sor. The H (high) and L (low) registers are always pointing to a specific
location called M, for memory. Many of the 8085 opcodes deal with M, so
it is important to be aware of the value in the HL register pair. Not just
HL, but any register pair that points to an address in memory is referred
to as an index. This is the meaning of the X in INX and DCX.

ARITHMETIC INSTRUCTIONS 2-17

In the instruction mnemonics, the indexes are specified as B, D, H, and
SP. You should recognize B, D, and H as the high byte of those register
pairs. SP is the stack pointer register.

With the exception of ADD A, none of these instructions affect the
registers specified as the operand of the mnemonic. These are source
registers, not destinations. In ADD A, the source is the A register, but as
you know, that is also the accumulator. As a result, this instruction adds
the accumulator to itself, so obviously the source value (the accumulator)
is changed. ADD Ais one way to double the value in the accumulator. You
will learn the other when you read about the logic operations later in this
unit. ADC A not only doubles the accumulator, it also considers the carry
(cy) from the next previous arithmetic operation.

ADI and ACI are similar to ADD and ADC, except that the value to be
added to the accumulator is in the memory address after the opcode. This
is called immediate addressing, because the value is immediately after
the opcode. Again, the C in ACI indicates that the carry flag will be added
to the sum of the accumulator and the immediate value.

INR instructions have the pattern 00xx x100. This time, bits 3, 4, and 5
identify which one of the eight registers is involved. The INR opcode in-
creases the contents of the register named. For example, the INR D in-
struction increases the D register by 1. You can add two to a register by
increasing the register twice. However, you cannot consider the carry
flag, because it is not affected by the INR instruction. Therefore, you can-
not link together several bytes and add to them with INR instructions.

2-18 MICROPROCESSOR ARCHITECTURE

However, you can increment register pairs: BC, DE, HL, or the stack pointer. To
do this you use the INX instruction. Although none ofthe flags are affected by INX,
the register pair is incremented by one. For example; if B is 0000 0000, and C is
1111 1111,, you can use INX B to increase that value by 1. The result will be a B
value of 0000 0001, and C value of 0000 0000,. Notice that the carry from the C
register was applied to the B register. If both registers contain all 1s, an INX B
instruction will cause both registers to go to all 0s. The common pattern for the INX
opcodes is 00xx 0011. A cursory examination of the opcodes reveals that the
following bit patterns specify the register pairs.

Pair Binary pattern
for bits 5 and 4

BC 00

DE 01

HL 10

SP 11

This 2-bit code for the double-length registers also has a common feature with the
3-bit codes used to identify the 8-bit registers. The codes for BC, DE, and HL have
the same values as the high 2-bits in the 3-bit register codes you saw earlier. For
example; the 3-bit code for B is 000, while C is 001. The code for the BC pair is
00—the same as the high two bits. Like the 3-bit register code, these 2-bit codes
occur in many of the 8085 opcodes.

ARITHMETIC INSTRUCTIONS 2-19

So that you will understand all this better, let’s look at a program segment to add
two 4-byte numbers. The following sequence will do just that. This assumes that
one 4-byte number is in registers BC and DE with the highest-order byte in B and
the lowest-order byte in E. The other number is in four sequential addresses, with
the lowest-order byte in the address currently indicated by HL. We also have to use
instructions such as MOV A,E to move (copy) the value from E into A. The result
is stored in memory, writing over the value that was there. This is done with the
instruction MOV M,A (copy A to M). The MOV instructions are explained
completely in Unit 3, but we must use them here to keep the program segment
correct.

1) MOV AE ;Copy E (low byte) to A

2) ADD M ;Add low bytes, do not include carry
3) MOV M.A ;Store result in Memory
4) INX H ;Point to 2nd byte

5) MOV AD ;Copy D (2nd byte) to A
6) ADC M ;Add 2nd bytes, with carry
7) MOV M,A ;Store result in Memory
8) INX H ;Point to 3rd byte

9) MOV AC ;Copy C (3rd byte) to A
10) ADC M ;Add 3rd bytes, with carry
11) MOV M,A ;Store result in Memory
12) INX H ;Point to 4th byte

13) MOV AB ;Copy B (4th byte) to A
14) ADC M ;Add 4th bytes, with carry

15) MOV M,A ;Store result in Memory

Figure 2-5
Program segment to add four bytes.

Notice that you must start with the lowest byte, because the carry from that
operation affects the next operation. For example, if there is a carry from the
addition of the lowest bytes, the ADC operation at line 6 will add that carry to the
second two bytes. Similarly, the carry (if any) is included at lines 10 and 14. You
do not include the carry at line 2 because you do not want a carry from the previous
operation (whatever that was) to affect the sum of the first two bytes.

2-20 MICROPROCESSOR ARCHITECTURE

The DAD instruction (opcode 00xx 10012) adds the specified double byte
register to the HL register. This is another way the HL register is dif-
ferent from BC and DE. Although the DAD instructions may generate a
carry, you cannot use that carry in a second DAD instruction. Therefore,
DAD is limited to adding two bytes, and the primary use for the carry is
to indicate that an overflow has taken place, and that the value in HL is
not complete. Although you can add additional bytes with the ADC in-
structions, this may not be the most efficient method.

Subtract

The subtract instructions subtract one value from another. In general,
this will decrease the value of the accumulator, just as the add instruc-
tions increase it. The decrement instructions, which are also in this
category have the ability to subtract one (1) from any specific register.
There is no double subtract instruction, but there are two compare in-
structions, so there are eight subtract instructions. They have the follow-
ing mnemonics and affects on the flags:

Mnemonic Flag Impact

Sul all flags affected
SuB all flags affected
SBI all flags affected
SBB all flags affected
DCR all except CARRY affected
DCX no flags affected
CMP all flags affected

CPI all flags affected

ARITHMETIC INSTRUCTIONS 2-21

Let’s look at the SUB and SBB instructions first. The common pattern for these
opcodes is 1001 xxxx,. Just like the add instructions, bit 3 determines whether or
not the carry flag is considered. However, the mnemonic uses a B for borrow
instead of a C for Carry. When the opcode is executed, a borrow will set the carry
flag. There is not a different flag to indicate a borrow rather than a carry. Consider
the following rules and examples.

1.0-0=0

2.1-1=0

3.1-0=1

4. 0-1=1 withaborrow of 1.
Borrow 11111 111 11111 111 1111111
Minuend 0000 0000 1010 1010 1000 0000
Subtrahend =0000 0001 -1010 1011 —0000 0001
Difference 11111 1111 11111 1111 0111 1111

The minuend is in the accumulator and the subtrahend is identified by the opcode.
In the first two examples, the subtrahend is one greater than the minuend. The result
isa value which is all Is and aborrow assigned to the carry flag. In the third example,
the subtrahend is less than the minuend. Even though borrows are required for
several intermediate bits, the overall result does not include a borrow.

Just as you can add A to itself, you can also subtract A from itself. You may think
this is a strange instruction, since the result is always zero. However, SUB A may
be preferred to MVI A,0 (move immediate 0 into A) for two reasons. First, after
SUB A, the flags will be in a known condition. MVI A,0 does not affect the flags.
Second, MVI A,0 requires two bytes, SUB A only one.

2-22 MICROPROCESSOR ARCHITECTURE

Because of the number of single byte registers, the most plentiful sub-
traction opcodes are SUB and SBB. Study the following list of opcodes.
Compare it to the list of ADD and ADC opcodes, and notice the
similarities and differences.

Mnemonic Opcode Action
SUBA 97 A-A=A
SBBA oF A-A-cy=A
SUBB 90 A-B=A
SBBB 98 A-B-cy=A
SUBC 91 A-C=A
SBBC 99 A-C-cy=A
SUBD 92 A-D=A
SBBD 9A A-D-cy=A
SUBE 93 A-E=A
SBBE 9B A-E-cy=A
SUBH 94 A-H=A
SBBH 9C A-H-cy=A
SUBL 95 A-L=A
SBBL 9D A-L-cy=A
SUBM 96 A-M=A
SBBM 9E A-M-cy=A

The two lists (subtract and add) are very similar. The only difference in
the opcodes is that bit 4 is a 1 in the subtract instructions and 0 in the
add instructions. All of the operations here are minus, where they were
plus in the add list. The carry (borrow) flag is still listed as cy, because it
is still the carry flag even though it may test for a borrow.

The SUI and SBI instructions subtract the value given in the instruc-
tion. Again, the accumulator is the minuend, but the subtrahend is the
next byte in memory after the opcode. This means that SUT and SBI are
two byte instructions. In all other respects, SUT is the same as SUB and
SBI is the same as SBB.

You should use DCR and DCX when you want to subtract one from the
value in a register. Use DCR when you want to specify a one byte register
and DCX when the register pair is BC, DE, HL, or the stack pointer. Be-
cause these are one byte instructions, you will find they work well when
values up to 4 need to be subtracted. To do that, you simply repeat the
DCR or DCX instruction the required number of times.

~

ARITHMETIC INSTRUCTIONS 2-23

These instructions compare the byte in the accumulator with another byte
specified by the opcode. In the case of CMP, it is one of the registers or the
M address specified by the HL index. CPI uses the value in memory
immediately after the CPI opcode. These instructions are listed with SUB
and SUI because their effect on the flags is the same. In other words, the
flags will be the same after you do a CMP B as they would be after a SUB
B. It is therefore very helpful to think of them in the same category.

As mentioned earlier, there is not a double-length subtract instruction.
Subtracting from a value in HL is not as easy as adding to it. It is also
difficult to complement the value in HL, so subtraction by addition is

complicated.

Now answer the following self-test review questions and then perform
Experiment 4.

Self-Test Review

11. Theresultofan ADD E instruction is placed in the

12. DAD B adds the register pair to the HL register pair and
puts the result in the register pair and the carry flag.
13. The INR instruction affects all flags except the flag.

14. INR and DCR instructions affect -byte registers.

15. INX and DCX instructions affect -byte registers.

16. The X in INX and DCX means

17. The register pair always points to a byte identified as M in
the instruction mnemonics.

18. The Iin ADI, ACI, SUI, and SBI stands for

19. CMP and CPI affect the flags the same as a/an instruction.

2-24 MICROPROCESSOR ARCHITECTURE

SPECIAL ARITHMETIC AND LOGIC
OPCODES

Besides addition and subtraction, the 8085 is also capable of several logi-
cal combinations of two values. From your experience with digital cir-
cuits, you should be familiar with the expressions AND, OR, and
Exclusive OR. As you also know, the circuits in a digital computer are
based on these logic combinations. It should seem natural therefore, that
the microprocessor allows you to use these functions to combine values
within a program. For simplicity, these three operations will be con-
sidered separately, although they have much in common.

One thing they all have in common is that they affect all the flags.

Logical AND.

When you AND two bytes, the individual bits of the byte are considered
separately. For example, if you AND the values 1010 11112 and 1111
01012, you get 1010 01012. The carry flag will always be cleared after an
AND operation. Let’s review the AND function quickly before you con-
tinue.

The logic table in Figure 2-6 shows the possible combinations of two bits.
The logic operations in the 8085 will not combine more than two bits
during any operation, so this table is sufficient.

bitA bitB AAND B
0 0 0
0 1 0
1 0 0
1 1 1
Figure 2-6
AND logic table.

The rule is that the result is only a 1 when both inputs are 1’s. Another
way to say this is that any 0 input will result in a 0 output.

SPECIAL ARITHMETIC AND LOGIC OPCODES 2-25

The mnemonics for the 8085 AND operations are ANA and ANI. After
the ANA, you indicate the 1-byte register A, B, C, D, E, H, L, or M. If you
use ANI, you specify the value to be ANDed. The opcode for the ANA in-
structions have the pattern 1010 Oxxx2. Bits 0, 1, and 2 indicate the 1-
byte register that will be ANDed with the accumulator. As usual, the
result will be placed in the accumulator, and all flags are affected. ANA
A can be used to check the value in the accumulator without changing
it. This maybe useful if the value was moved to A from some other loca-
tion.

The ANI instruction is like the other immediate instructions. The
operand byte is in the next address. Other than that, it is identical to the
ANA instruction. All flags are affected, and the carry flag will be 0 after
an ANT opcode is executed. ANI is also useful when you want to clear all
but certain bits in a byte. For example, if you want to know if bit 0 is a
1, you can use ANI 01 to clear all but bit 0. Then, if the value in the ac-
cumulator is zero, you know that bit 0 is a 0. If the byte is not zero, bit 0
must be a 1. This operation is called masking, because all 0 values in
the mask will be 0’s in the result. The only bits that will be 1’s are those
that are 1’s in both the accumulator and the operand. You will learn more
about this under the heading of flags in Unit 4, but Figure 2-7 will show
you how an AND logic mask works.

test byte 0100 0011 bits 0, 1, & 6 are set
AND mask 0000 0010 to test bit 1

result 0000 0010 only bit 1 is set

test byte 0100 1001 bits 0, 3, & 6 are set
AND mask 0000 0010 fo test bit 1

result 0000 0000 no bits are set

Figure 2.7
AND logic mask.

In the first example, bit 1 is set (1) in both the test byte and the mask.
As a result, the AND function has bit 1 set, so the value is NOT zero. In
the second example, bit 1 is not set in the test byte, so the result is zero.

2-26 MICROPROCESSOR ARCHITECTURE

The purpose of this course is to teach you the instructions for the 8085,
so we cannot show you all the ways you can use the instructions. This is
left to you and your imagination. However, you must keep in mind the
rules for each operation.

Logical OR

When you OR two bytes, the result will have 1’s where either of the source
bytes contained 1’s. The table in Figure 2-8 shows the result of combin-
ing the four different possible inputs. For OR operations the rule is that
the output is a 1 whenever either input is a 1. Or, the output is 0 only
when both inputs are 0. The carry flag and auxiliary carry flag will al-
ways be cleared after an OR function.

bitA bitB AORB

0 0 0

0 1 1

1 0 1

1 1 1
Figure 2-8

OR logic table.

SPECIAL ARITHMETIC AND LOGIC OPCODES 2-27

The mnemonics for 8085 OR operations are ORA and ORI. The ORA
instructions are followed by the name of the l-byte register that you want
to OR with the accumulator. The opcode for ORA is 1011 Oxxx,, which is
the same as ANA except bit fourisnowal. Like ANI, ORI can also be used
to test for a specific bit. If you wish to test bit 0, you can apply ORI FE,
and check if the resulting byte has an odd or even number of 1s. An even
number of 1s means bit 0 is a 1, and an odd number of 1s means bit 0 is
a 0. This is also a mask, but this time the values that are 1s in the mask
will be 1sin the result. Again, you will learn more about masks under the
heading of flags in Unit 4, but Figure 2-9 does show you how an OR logic
mask works.

test byte 0100 0011 bits 0, 1, & 6 are set
OR mask 1111 1101 to test bit 1
result 1111 1111 number of 1s is even

test byte 0100 1001 bits 0, 3, & 6 are set
OR mask 1111 1101 to test bit 1
result 1111 1101 number of 1s is odd

Figure 2-9
OR logic mask.

In the first example, bit 1 in the test byte is being tested to see if it is set
(1). Therefore, all of the bits in the mask are set except for bit 1. Because
bit 1 in the test byte is set, the OR function causes all bits to be set in the
result. This produces in an even number (8) of 1s in the result, which will
be reflected in the parity flag. In the second example, bit 1 is not set in the
test byte, so it is not set in the result. Therefore, an odd number of bits (7)
are 1sin the result. This is only one of the many ways you can use the OR
instruction. Itis aninteresting fact that ORA A and ANA A have the same
result. The accumulator is unchanged, but the flags are set or cleared
appropriately.

2-28 MICROPROCESSOR ARCHITECTURE

Logical Exclusive OR

The rule for the exclusive OR (XOR) function is that the output is a 1
when the two inputs are different. This is the same as saying that the
outputis a 0 whenever both inputs are the same. This is useful when you
want to selectively change one or more of the bits in a byte. Figure 2-10
is a table showing the input and output values for the XOR function.

bitA bitB AXORB
0 0 0
0 1 1
1 0 1
1 1 0
Figure 2-10
XOR logic table.

The 8085 exclusive OR instructions are XRA and XRL. B y now, you should
be getting used to the structure of these mnemonics, so it should be ob-
vious that XRA is followed by the 1-byte register name, which will be ex-
clusively ORed with the accumulator. By referring to the Opcode Chart
you can see that the opcode for the XRA instructions is 1010 1xxx. XRI,
of course, combines the next byte in memory with the value in the ac-
cumulator. Like the AND and OR functions, the carry flag and auxiliary
carry flag will always be cleared after an OR function. The one byte in-
struction XRA A is sometimes used to clear the accumulator.

SPECIAL ARITHMETIC AND LOGIC OPCODES 2-29

Figure 2-11 shows the effect of using an exclusive OR mask on a byte.
For this example, we have used the output of the first operation as the
input of the second, you can see that the byte returns to its original value
when the mask is applied twice.

test byte 0100 0011 bits 0, 1, & 6 are set

XOR mask 0000 1111 toggle the low nibble

result 0100 1100 high nibble same, low nibble
complimented

test byte 0100 1100 bits 2, 3, & 6 are set

XOR mask 0000 1111 toggle low nibble

result 0100 0011 high nibble same, low nibble

complimented

Figure 2-11
XOR logic mask.

Any 1 in the XOR mask toggles the corresponding bit in the test byte.
One use for this is to convert lowercase ASCII characters to uppercase
and vice versa. The difference between uppercase and lowercase ASCII
characters is that bit 6 is a 1 for lowercase and a 0 for upper case. If you
use an XOR mask of 0100 00002, bit 6 will toggle, making lowercase upper
and uppercase lower.

Think about that and decide how you might use the AND and/or OR func-
tions to covert all characters to uppercase or all to lowercase.

Have you thought about it? To convert uppercase letters to lowercase,
you must change bit 6 from a 0 to a 1. This is easily done by ORing a byte
that has only bit 6 set, with the ASCII character. In Experiment 5, you
will have an opportunity to see this, and then exercise the instructions
that convert lowercase to uppercase.

Now answer the following self-test review questions and then perform
Experiment 5.

2-30 MICROPROCESSOR ARCHITECTURE

Self-Test Review

20. The mnemonic for the instruction that ANDs the next (immediate)
byte with the accumulator is

21. When you AND 1011 11112 with 0110 00012 the result is

22. The opcode for ORI is (Refer to
Figure 2-4 if necessary.)

23. If you want to AND the accumulator with the H register the
mnemonic to use is .

24. What will be the value in the accumulator after XRA A?

25. An AND mask has

26. An exclusive OR mask has s in the bits you wish to remain the
same.

s in the bits you want to retain.

27. What is the mnemonic to AND the contents of memory (as pointed to
by HL) with the accumulator.

SHIFT AND OTHER LOGIC OPERATIONS 2-31

SHIFT AND OTHER LOGIC OPERATIONS

The remaining instructions and opcodes for this unit are listed in Figure
2-12. These fall into three categories. The first category contains the
instructions that rotate, or shift, the accumulator. The second has only
one instruction, which compliments the accumulator. And the last
category, also with one instruction adjusts the accumulator for binary
coded decimal.

Mnemonic Opcode Flags Affected Action

RLC 07 carry only Rotate A left, A, = A, A, =cy

RRC OF carry only Rotate Aright, Ay = A, A, =cy

RAL 17 carry only Rotate Aleft, A, = cy, cy = A,

RAR 1F carry only Rotate A right, Aj=cy,cy =A,

CMA 2F none A compliment = A

DAA 27 all Decimal adjust A = A
Figure 2-12

Rotates, DAA, and CMA.

DAA and CMA

Let’slook at the last two categories first. DAA, opcode 00100111 9, adjusts
the accumulator so that the value is in a format called binary coded
decimal, or BCD. Binary coded decimal means that instead of the eight
bits representing a number between 0 and 255, ,, they represent two
decimal digits. This allows a range between 0 and 99, . Figure 2-13 is a
table of the BCD values.

2-32 MICROPROCESSOR ARCHITECTURE

Because BCD is a convenient notation, it is often used to represent num-
bers that must be displayed. It requires special handling, as you will see,
and requires more space in memory that a simple binary number.

Decimal Binary BCD

0 0000 0000 0000
1 0001 0000 0001
2 0010 0000 0010
3 0011 0000 0011
4 0100 0000 0100
5 0101 0000 0101
6 0110 00000110
7 o111 0000 0111
8 1000 0000 1000
9 1001 0000 1001
10 1010 0001 0000
n 1011 0001 0001
12 1100 0001 0010
i3 1101 0001 0011
14 1110 00010100
15 1 0001 0101

Figure 2-13
Binary Coded Decimal.

From 0 through 9, you should recognize these as the same as the
hexadecimal values. For values greater than 9, the BCD requires a
second nibble that is not all zeros.

SHIFT AND OTHER LOGIC OPERATIONS 2-33

The microprocessor adds two bytes in the same way, regardless of
whether the code is BCD or not. However, if the values are BCD this could
lead to some errors. The examples in Figure 2-14 show what can happen.

carry 0110 100 1000 1001 10000 001 0001 000

0101 0101 0101 0110 1001 1000 0000 1000
+0011 0100 +0100 0100 +1000 0001 +0000 1000
total 1000 1001 1001 1010 10001 1001 0001 0000

55 56 98 08

+34 +4 4 +81 08

89 910 119 10

Figure 2-14
BCD addition.

The first example (in the left column) adds the binary values for 85, ,and
52,, and produces the sum 137, . If the values were BCD, 55, , plus 34,
produces a total of 89, ,, which is also correct.

In the second example, the situation is slightly different. The binary
addition sees the values as 86, , plus 68, , for a total of 154, .. However, if
the numbers are BCD, the addition is 56,, plus 44, ,and a total of 9 10,,.
But that cannot be! The highest nibble in BCD is equal to 9,0- A nibble
value of 10, , is not allowed. Obviously an adjustment is needed.

Let’s check the third example. In binary, the addition is 1 52,,plus 129, ,
for a total of 26, , and a carry. But in BCD, the addition would be 98, , plus
81, ,, for a total of 19, plus a carry. Obviously an error.

In the fourth example, the numbers are very simple. In standard binary
the values represent 8, | plus 8, , for a total of 16,,- In BCD it is also 8,
plus 8,,, but the total only represents 10,,. How can this problem be
corrected?

The answer is to use the decimal adjust accumulator (DAA) instruction.
DAA makes use of the carry flag and an intermediate, or auxiliary, carry
flag (A or AC). The A flag is set whenever there is a carry from bit 3 to bit
4 during a math operation in the accumulator.

2-34 MICROPROCESSOR ARCHITECTURE

Let’s see how this can help solve the problem. In the first example, no
adjustment was necessary. It is also obvious that neitherthe carrynorthe
Aflag would be set. In the second example, neither the carry nor the A flag
are set, but there is a problem. It appears that the lower nibble is greater
than 9. To correct the problem use the first DAA rule is as follows:

1. Whentheresulting low nibble ualue is greater than 9, DAA must add
6 to the result.

Let’s see how that looks:
carry 1000 100
0101 0110
0100 0100
subtotal 1001 1010
add6 _+00000110
total 1010 0000

But wait, the BCD now says 56,, plus 44,, is 10 0, At first glance, you
might think that is right, but remember, BCD does not permit any nibble
with a value greater than 9. This leads to the second rule:

2. Iftheresult in the high nibble is greater than 9, DAA must add 6 to
it—that is, add 60, to the byte value.

Let’s check example 2 again.

carry 1000 100
0101 0110
+0100 0100
subtotal 1001 1010
add 6 +0000 0110 (rule 1)
subtotal 1010 0000

add 60 +0110 0000 (rule 2)
total 1 0000 0000

Now the value is correct. 56,; plus 44,, is 00,, plus a carry to the next
byte (100,,).

But what about the third example? Neither result is greater than 9,
but the high nibble is only one, and it should be seven. This leads to a
modification of the second rule:

2. (Revised) If the result in the high nibble is greater than 9, or the
carry flag is set, DAA must add 6 to it—that is, add 60,, to the
byte value.

SHIFT AND OTHER LOGIC OPERATIONS 2-35

Using revised second rule, the third example is now correct—98, , plus
81,, equals 79, plus a carry.

In the fourth example, the carry is not set, and no nibble is greater than
9. This is why the A flag is needed. Notice that there is a carry from the
low nibble to the high nibble. This causes the high nibble to be a 1, which
is correct, but it also indicates that the low nibble is incorrect. Again, DAA
must add 6, so we will restate the first rule as follows:

1. (Revised) When the resulting low nibble ualue is greater than 9, or the
A flag is set, DAA must add 6 to the result.

With this change, the fourth example correctly states that 8, Plus 8,
equals 16, .

Fortunately, it is not normally necessary to remember the rules the DAA
instruction uses. Just remember to use DAA after any addition operation
on BCD numbers.

The last instruction to be described in this category is CMA (comple-
ment the accumulator). You can use this instruction any time you
want to change all the bits in the accumulator. Any that were 1s will be
0Os and those that were Os will become 1s. None of the flags are affected by
the CMA instruction. From the opcode chart you can see that the opcode
for CMA is 0010 1111,. The difference between the CMA instruction and
the XRIinstruction, written as XRI FF, ¢, ishow the flags are affected and
the fact that CMA is a single-byte instruction.

Shifts or Rotates

The shift, or rotate, instructions cause the bits in the accumulator to be
transferred into their neighbor on either the right or the left, depending
on the instruction. Although the carry flag is involved in all rotation
instructions, it can be used in two different ways.

In the RAR and RAL instructions, the carry flag is included as though it
were a ninth bit of the register. Therefore, these are actually nine bit
rotations. Some have called these rotate around right (RAR) and
rotate around left (RAL) to distinguish them from the other rotation
instructions. RAR is a quick way to divide the accumulator by two. The
remainder is in the carry flag. If the carry flag is zero, RAL effectively
multiplies the accumulator by two. However, it is no faster than ADD A,
which also multiplies it by two.

2-36 MICROPROCESSOR ARCHITECTURE

Also, youmust clear the carry before you can use RAR or RAL to multiply
or divide a second time. RAR and RAL are illustrated in Figure 2-15.

> CARRY Az Ag
RAR
CARRY [« Ay Ag
RAL
Figure 2-15

How the RAR and RAL instructions work.

The RAR instruction shifts all bits to the right. The value that was in A,
is transferred to the carry flag, and the value that was in the carry flag
is transferred to A,. The RAL instruction shifts all bits to the left. The
value that was in A, is transferred to the carry flag, and the value that
was in the carry flag is transferred to A,.

Youshould remember RRC asrotate right without the carryand RLC
as rotate left without the carry. These are eight bit rotations. The
carry flag is the same as the bit that was rotated out of the end of the
register. These two instructions are illustrated in Figure 2-16.

v
CARRY A7 Ag
RRC
CARRY |« A7 Ao |
RLC
Figure 2-16

How the RRC and RLC instructions work.

SHIFT AND OTHER LOGIC OPERATIONS 2-37

The RRC instruction shifts all bits to the right. The value that was in Ao
is transferred to A7 and copied to the carry flag. The RLC instruction
shifts all bits to the left. The value that was in A7 is transferred to Ao
and copied to the carry flag. In both these instructions, the value that
was previously in the carry flag is lost.

Now answer the following self-test review questions and then perform
Experiment 6.

Self-Test Review

28. After an RRC instruction, the carry flag will be the same as bit

29. The RAR instruction causes the value in the bit A7 to be
transferred to

30. The DAA instruction adds (&_when the low nibble is greater than

3_, or the 4 flag is set.

31. The DAA instruction adds ___ to the high nibble when the high
nibble is greater than __, or the flagis set.

32. Which instruction divides the accumulator by two, leaving the
remainder in the carry flag?

33. Which flags are affected by the CMA instruction? N() M

2-38 MICROPROCESSOR ARCHITECTURE

UNIT SUMMARY

1. The 8085 has 10 accessible registers: the accumulator, the flags, B,
C, D, E, H, L, the stack pointer (SP), and the program counter
(PC).

2. The accumulator, the flags, B, C, D, E, H, and L are 8-bit registers.
3. The program counter and the stack pointer are 16- bit registers.

4. The accumulator and flag registers can be accessed as a 16-bit
register called the processor status word (PSW).

5. B & C,D & E, and H & L form register pairs that are identified by
the name of the high order byte (i.e. B, D, and H).

6. The 16-bit registers B, D, H, and SP form a group called the register
array.

7. The flags are sign (S), zero (Z), auxiliary carry (A or AC), parity (P),
and carry (C or CY).

8. The A register is the same as the accumulator.

9. Don’t confuse the A register and the A flag.

10. Don’t confuse the C register and the C flag.

11. There are 246 usable opcodes in the 8085.

12. The 8-bit registers are identified by three bits of the opcode as

follows:
Register Binary pattern
A 111
B 000
C 001
D 010
E 011
H 100
L 101
M 110

UNIT SUMMARY 2-39

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

25.

The 16-bit register pairs are identified by two bits of the opcode as
follows:

Register Binary pattern
B 00

D 01
H 10
SP 11

The addition mnemonics are ADD r, ADC r, ADI, and ACIL The %
is replaced by the name of an 8-bit register (A, B, C, D, E, H, or L)
or M for memory. The mnemonics ADC and ACI add one if the
carry flag is set (1). The mnemonics ADI and ACT use the next

byte as an immediate operand.

DAD r adds the specified register pair to the HL pair.

The subtraction mnemonics are SUB r, SBB r, SUI and SBI. The r
is replaced by the name of an 8-bit register (A, B, C, D, E, H, or L)
or M for memory. The mnemonics SBB and SBI subtract one if the

carry flag is set (1). The mnemonics that have an I in them use the
next byte as an immediate operand.

INR r adds 1 to the identified byte.

INX r adds 1 to the identified 16-bit register pair.

DCR r subtracts 1 from the identified byte.

DCX r subtracts 1 from the identified 16-bit register pair.

ANA r and ANI logically AND the specified byte with the
accumulator.

ORA r and ORI logically OR the specified byte with the
accumulator.,

XRA r and XRI logically exclusive OR the specified byte with the
accumulator.

CMP r and CPI compare the specified byte with the accumulator,
which sets the flags the same as if a subtract had taken place.

RLC rotates the bit values in the accumulator to the left, the carry
will have the same value as bit Ay, or old bit A,.

2-40 MICROPROCESSOR ARCHITECTURE

26.

27.

28.

29.

30.

RRC rotates the bit values in the accumulator to the right, the
carry will have the same value as bit A7, or old bit Ag.

RAL rotates the bit values in the accumulator to the left, the carry
will get its value from bit A7, and bit Ao will get the value that
was in the carry flag.

RAR rotates the bit values in the accumulator to the right, the
carry will get its value from bit Ao, and bit A7 will get the value
that was in the carry flag.

CMA causes all 1’s in the accumulator to change to 0’s and all 0’s to
become 1’s.

DAA corrects the accumulator to binary coded decimal by the
following rules.

1. When the resulting low nibble value is greater than 9, or the
A flag is set, 6 is added to the value in the accumulator.

2. When the resulting high nibble value is greater than 9, or the
C flag is set, 6 is added to the value in the high nibble.

Unit 3

ADDRESSING MODES

3-2 ADDRESSING MODES

CONTENTS
INTRODUCTION 3-3
UNITOBJECTIVES 34
MOVE INSTRUCTIONS 3-5
IMMEDIATE ADDRESSING 3-7
Assembly Language 3-7
Immediate Addressing to 16-bit Registers 3-8
STORESANDLOADS 3-9
Indirect loads and Stores 3-9
Direct Loadsand Stores 3-10
OTHER REGISTER TRANSFERS 3-12
UNITSUMMARY 3-15

INTRODUCTION 3-3

INTRODUCTION

Addressing modes are the ways a microprocessor accesses data. Each
microprocessor has its own methods. If you have previously studied
Motorola microprocessors, you will find the addressing of the 8085 some-
what different. The 8085 has three addressing modes: direct, indirect,
and immediate. In Unit 2, you saw two of these ways that the 8085 can
access data: indirect and immediate. You will recognize these as they are
discussed.

Also, because this unit focuses on the movement of data, you will see that
the addressing modes are closer related to data movement than they are
to arithmetic and logic operations.

The addressing mode is only one way of classifying the instruction set.
Another way, as you learned in Unit 2 is by the type of operation per-
formed. A third way is by the number of bytes required for the instruc-
tion.

Most of the 8085 instructions accomplish their work with a single byte.
When an addressing mode is involved, all single byte instructions use
indirect addressing. In indirect addressing, a register has the address of
the data. Two byte instructions use immediate addressing. In immediate
addressing, the operand (the second byte) is the data. All two or three
byte 8085 instructions involve some addressing mode. Three byte ad-
dressing mode instructions can use either direct or immediate address-
ing. That is, the second and third byte may contain the data (immediate
addressing), or they may be the address of the data (direct addressing).

All 8085 addressing is absolute. The value given by the register or
operand is the specific address in memory, and it is not affected by the
location of the program. In many other microprocessors, the addressing
may be relative to the opcode or to a certain other memory address.

Again, you will find it helpful to refer to the table of opcodes as you read
this unit.

3-4 ADDRESSING MODES

UNIT OBJECTIVES

When you complete this unit you will be able to:

1.

Identify the type of addressing used by each 8085 move, load, or
store instruction.

Define the three 8085 addressing modes.
Identify and explain the effect of the 8085 exchange instructions

Given a desired data transfer, select the correct move, load, store, or
exchange instruction to perform that data transfer.

Define the term label.

State the criteria an assembler uses to determme if the operand is a
number or a label.

Identify the assembler notations for decimal, binary, and

hexadecimal.

MOVE INSTRUCTIONS 3-5

MOVE INSTRUCTIONS

The most common 8085 instruction is the move instruction. The stand-
ard MOV instruction involves a single byte opcode, and the registers in-
volved are identified by the mnemonic. Most of these are identified by
the mnemonic MOV rl,r2 -- where rl is the destination and r2 is the
source. The destination register is over written by the value in the source.

This is illustrated in Figure 3-1. Figure 3-1A shows the registers before
the MOV A,B instruction. For illustration, the registers are filled with
the hexadecimal values 11, 22, ..., CC. Therefore A has a beginning value
of 1116, and B has a beginning value of 3316.

§ Z XACX P X C

A [o]o]o[]o[o]o] 1] lo[o[1]o]o[o[1]0] Fuaes
Blojo|t|1|o]lo|1]1 1jolojolt1|ojo| C
Diojt{o]1jof{1|o]1 i{1]ojo|1|1|o| E
Hiolt1|1|{1{o]1|{1]|1]1]o]lolo|1]|olo|o]| L
PCli1|ojol1|1|{o]jo|1}1{ol1]o|1]|0]|1]0O
SP{tjo|1|{t{t]oj1{1]1|1]|o]lo]1|1]o]0O

Figure 3-1A
) S Z XACX P X C
A [o[o[1]1]o]o[1]1] [o[o[1]0]0]o[1]Q] Fraes
Biojojt1|t1|ofolt1|1}jo|1|olo 110(0|C
Dio|tjol1|oft|o|1|olt|t]|o|o]1|1{olE
Hlof1|1[t1|o|1]1{1]1]o]lo|o|1]olo|o|L
PCit|ojolt|t|oflol1]1|ol1]|o]|1]0]1]1
SPit{olt{t]t|ojf1{1}il1{olol1]1lo]|0O

Figure 3-1B

The MOV instruction.

Figure 3-1B shows the registers after the MOV A,B instruction. Only two
values have changed. The only one that is important to this discussion
is the accumulator, or A register. It now contains the same value that was

3-6 ADDRESSING MODES

in the B register. The B register remains unchanged. Also, notice that
the flags remain unchanged, because the move instructions do not affect
the flags. The other register that changed is the program counter. It has
been incremented by one to point to the next instruction.

Instructions in this form involve no specific addressing mode, because
the two registers involved contain the data. However, fourteen MOV in-
structions use indirect addressing. These instructions have two forms
MOV M,r and MOV r,M. In both cases, the r identifies one of the 8085’s
1-byte registers (A, B,C,D,E, H, or L). However, the 8085 does not have
an M register. The M identifies the byte of data indexed, or pointed to,
by the H-L register pair. This is indirect addressing, because the register
(H-L) contains the address of the data.

Together, the MOV instructions account for 63 of the 8085’s opcodes. This
is more than one-fourth of the microprocessor’s executable opcodes. The
MOV instructions are the easiest way to transfer a byte from memory to
a register, or from a register to a selected address in memory.

IMMEDIATE ADDRESSING 3-7

IMMEDIATE ADDRESSING

Closely associated with the MOV instructions are the MVI instructions.
The only difference is that MVI instructions include a number instead of
a source byte. Thus, the form of the instruction is MVI r,byte. The value
of the byte is immediately moved to the register specified. However, one
of the MVI instructions can be considered both an indirect and an im-
mediate addressing instruction. The source is the immediate byte, but
the destination is the address M. M, as you will remember, is selected by
the address in the H-L register pair.

Assembly Language

The mnemonics are used not only for written notation of the machine
code, but also to be translated, or assembled, into machine code by a
program called an assembler. To do this, the assembler program must
read the mnemonics and translate them into machine code. In the case
of the mnemonics themselves, this requires only that they be spelled ex-
actly right. But in the case of numbers, there is a problem. In many cases,
it is helpful to specify numbers as binary or hexadecimal, instead of
decimal. The most common convention is to add a letter to the end of the
number. B is used for binary, and H is used for hexadecimal. The default
values (no letter) are decimal.

A second difficulty occurs, because assembly language allows the use of
labels. Labels are groups of letters that stand for an address or number.
The difficulty in allowing labels is that it then becomes impossible for
the assembler to tell the difference between numbers and labels. To
resolve this difficulty, the following convention has been adopted.

i All numbers must begin with a numeral.
2. All labels must begin with a letter.

For decimal and binary numbers, this raises no problems, because all bi-
nary and decimal values are represented by numerals. For hexadecimal
values, the convention frequently requires the addition of a leading zero.
Therefore, if the number is 3310, it can be represented as 33, 00100001B,
or 021H. Although it is not necessary, it is customary to include the lead-
ing zeros. However, for numbers 16010 or greater, you must include the
zero in the hexadecimal notation (OAOH). The zero tells the assembler
that this is a number, not a label.

3-8 ADDRESSING MODES

Let’s look at an example of how this affects the MVI instruction. First
assume that you want to put a value of 5 into the accumulator. The
mnemonic for this is MVI A,5. There is no ambiguity in the number 5,
because it is the same in decimal and in hexadecimal. Next, assume you
want to put a value of 18810 into the accumulator. The normal way to do
this is with the instruction MVI A,188. This specifies the decimal value
and the assembler makes the conversion to binary. However, if you
wanted to apply a mask of 101111002 it is easier to represent the num-
ber in hexadecimal -- MVI A,0BCH. Although a very experienced
programmer might recognize this as 18810, most would have to figure it
out. It is easier to have the assembler program do this for you.

Immediate Addressing to 16-bit Registers

Just as you might want to put an 8-bit numberinto a 1-byte register, you
might also want to put a 16-bit number into a 2- byte register, or register
pair. Because the register pairs are identified by only the letter of the
high order byte, a different mnemonic was chosen -- LXI.

For example, if you want to put a value of 30,00010 into the D-E pair, you
would use the instruction LXI D,30000. If you use an LXI instruction and
a value less than 256, the high byte will be zero. For example, LXI B,10
will put a zero into B and a 10 into C. In Unit 2, you learned that DAD,
INX, and DCX could be applied to B, D, H, and SP. This is also true of
LXI. You cannot use LXI for the program counter or the PSW. You will
learn how to change those registers in Unit 5.

STORES AND LOADS 3-9

STORES AND LOADS

The opcodes in the form 00xx xx10 are identified by mnemonics that in-
dicate they either store values, or transfer the value to memory, or load
values, by bringing them from memory. These instructions are either
direct or indirect as indicated in Figure 3- 2.

Mnemonic Opcode Mode Action
STAXB 02 Indirect A=> Address B
LDAX B 0A Indirect Address B=> A
STAXD 12 Indirect A=> Address D
LDAXD 1A Indirect Address D=> A
SHLD adr 22 Direct L => adr, H => adr+1
LHLD adr 2A Direct adr+1 =>H,adr=>L_
STAadr 32 Direct A=>adr
LDAadr 3A Direct adr=>A
Figure 3-2
Store and Load instructions.

Although these instructions appear to be in two categories (store and
load) it is easier to discuss them in relation to their addressing modes.
Four use indirect addressing, and the other four use direct addressing.

Indirect Loads ahd Stores

The indirect load and store opcodes use a register pair (either B-C or D-
E) to point to an address in memory. The load operations load the data
from that address into the accumulator. The store operations copy the
data in the accumulator to memory. The mnemonics stand for the opera-
tion to be performed.

For example, the load operations start with the letters LD, for load, and
the store instructions start with the letters ST, for store. The A, of course,
stands for the A register (the accumulator). The X is for index, just as it
was in DCX and INX. The last letter indicates which register pair to use
as an index.

You might have expected to find the instructions STAX H and LDAX H.
But if you will think about it for a moment, you will realize that because
the HL pair points to the address called M, STAX H is identical to MOV
M,A. Similarly, LDAX H means the same as MOV A M. There are other
instructions you will learn about in Unit 5, that perform the same func-
tions with regard to the stack pointer.

3-10 ADDRESSING MODES

In summary, the STAX and LDAX instructions are very close in nature
to the MOV r,M and MOV M,r instructions. Keep them in mind when-
ever you are using the BC and DE register pairs as pointers.

Direct Loads and Stores

There are two direct loads and two direct stores. As you will recall, direct
addressing means that the operand is the memory address to be used.
For example, if the mnemonicis STA 5100H, the datain the accumulator
will be copied into address 510014

Similarly, LDA 5100H will copy the data currently at address 510016 into
the accumulator.

Let’s compare this to the immediate instruction, MVI 10H. Notice that
the load instruction can accept a 2-byte word address, but the operand
in the move immediate instruction must be placed in the accumulator,
which can only hold a single byte. What if you want to put two bytes into
a certain pair of memory locations?

This is the function of the SHLD instruction. SHLD (Store HL Direct)
and LHLD (Load HL Direct) are the only direct addressing instructions
that are capable of handling two bytes of data. You must be careful when
you work with these instructions. Always remember: the operand
provides the address and the H and L registers provide the data. These
are reciprocal operations. Data stored with SHLD can be retrieved with
LHLD.

After an SHLD instruction, the operand address will have a copy of the
data in the L register, and the next higher address will have a copy of
the H register.

After an LHLD instruction, the data at the operand address will have
been copied into the L register, and the data at the next higher address
from the operand will have been copied into the H register.

STORES AND LOADS 3-11

Self-Test Review

1.

N o o oa

10.

In the mnemonic MOV r1,r2 the rl is the Des 27 gﬁﬁ/ r2is the

Sociin—t-

In direct addressing, the operand is the memory 4 O/ //,455 of
the data to be copied.

In indirect addressing, the operand identifies thes7 444/t ¢ that
points to the data to be copied.

In immediate addressing, the operand is the to be copied.
MVI A,21 uses addressing.
MOV A, M uses addressing.

What direct addressing instruction will copy the values from the H
and L registers into memory?

The assembler distinguishes labels from numbers, because numbers
start with a

LDAX Dis an example of addressing.

Under what circumstance would MOV A,M be the same as LDA
5100H?

3-12 ADDRESSING MODES

OTHER REGISTER TRANSFERS

The 8085 has four instructions that quickly move the values in the
register pairs around. these are valuable to you as a programmer, be-
cause they allow you to effectively use the 16-bit registers for more than
one value at a time. As you know, the H-L pair point to an address called
M. M is accessible for use as an operand in arithmetic and logic opera-
tions. Wouldn't it be nice if you could use D-E also?

What if you wanted to write a program that would work at any location
in memory? But, all the 8085 jump instructions are to specific memory
addresses. What can you do about that?

All these things, and many more can be accomplished by using the fol-
lowing four special register transfers:

PCHL Copy H & L to the Program Counter
SPHL Copy H & L to the Stack Pointer

XTHL Exchange the top of the stack and H & L
XCHG Exchange D& EandH &L

As you may notice, these fall into two general types: copies and exchan-
ges. This is very important! When something is copied the old value at
the destination is lost, and it cannot be regained. When values are ex-
changed, both values can still be used.

The two copy instructions allow you to put the value currently in H & L
into either the program counter or the stack pointer. For example, if you
copy HL into the program counter, that will become the address of the
next instruction to be executed. If you copy H & L to the stack pointer,
that address will become the top of the stack.

The stack is an area in memory that you can use for temporary storage
of the registers. You will learn how to use the stack in Unit 5. For now,
all you need to know is that there are special instructions relating H &
L to the stack pointer and the stack.

The letters in the mnemonic represent the operation. PC means program
counter, SP means stack pointer, and HL identifies the HL register pair.
Therefore, SPHL means to move the value in HL into the SP register.
Notice that like the MOV instructions, the destination is first and the
source is second. PCHL means to move the contents of HL into the PC
register.

OTHER REGISTER TRANSFERS 3-13

The SPHL instruction is only useful to initialize, or set up a stack. There
is no provision in the 8085 for saving the old stack pointer value. It is
forever lost when the SPHL instruction is executed. Because of this, you
must use’ SPHL with extreme care and much thought. Do not use it
casually.

Similarly, PCHL is a "brute force" jump. You cannot save the program
counter,so there is no way to return to that point. PCHL is occasionally
called an "indirect" or "computed” jump. Like SPHL, PCHL must be used
with care.

The exchange instructions are much more useful, because they preserve
both values. In other words, if you repeat the instruction, and have not
modified either value the contents will be the same. You will probably
find that XCHG is the more useful operation. It allow you to use the D
& E register pair almost as easily as you use the H & L pair. Here is how.
If you write a routine that works with M to perform a given task, you can
assign the memory location for one set of figures to H & L and the loca-
tion for a second set to D & E. Then, after you use the routine with H &
L, you do an XCHG and repeat the routine, using exactly the same in-
structions. Again, the letters in the mnemonics identify the operations.
XCHG simply means "exchange.” You must remember what is ex-
changed.

XTHL is a more conventional notation. The X means exchange, T stands
for top, and HL indicates the HL register pair. The XTHL instruction ex-
changes the H & L registers with the top of the stack. The top of the stack
is always defined as the address pointed to by the stack pointer. There-
fore, when you execute XTHL the following operations are performed:

(L) <====>((SP))
(H) <====> ((SP)+1)

The first notation means that the contents, indicated by the parentheses,
of L are exchanged (arrow head at both ends) with the contents of the
address designated by the stack pointer. The double parentheses around
SPindicate that the SP register contains the address of the data. Similar-
ly, the second notation indicates that the contents of the H register are
exchanged with the data at the next address above that indicated by the
stack pointer.

3-14 ADDRESSING MODES

XTHL is similar in use to XCHG. With XTHL you can use two addresses
in memory to point to another memory location. However, with XTHL
you must be sure the stack pointer has the same value for the second
XTHL operation, or what you get back into the HL pair will not be the
same as when you started. Any time you work with the stack pointer, or
any stack operation, you must be careful to keep track of what the stack
is doing. As you will learn in Unit 5, most stack operations change the
value of the stack pointer automatically.

Self-Test Review
11. What instruction copies the values from HI into the program
counter? ¢ 4 L-
12. The SPHL instruction copies the values from the H
L into the Stack po,iites
13. What instruction is sometimes ecalled an indirect jump? _ZC H/L
14. What does the X stand for in XTHL? <. <
15. What does the T stand for in XTHL? 7o/ H L
16. What does the L stand for in XTHL? _Z tegl sher
17. Which two registers are exchanged by XCHG? _&L and M L
18. The contents of which address are exchanged with the H register

when XTHL is executed? = [f H

UNIT SUMMARY 3-15

o

e T L

UNIT SUMMARY

The move, copy, and exchange instructions use three addressing
modes: direct, indirect, and immediate.

In direct addressing, the operand is the address of the data.

In indirect addressing, the operand is the name of a 16-bit register
that contains the address of the data.

In immediate addressing, the operand is the data.

The operand may be either a number or a label.

All numbers start with numerals.

Labels are groups of letters that stand for a number or address.

The direct addressing instructions are as follows:

STA Store A to operand address
LDA Load A from operand address
SHLD Store HL to operand address
LHLD Load HL from operand address

The indirect addressing instructions are as follows:

MOV riM Move contents of address HL into r1
MOV Mr1 Move contents of r1 to address HL
LDAXB Load A from address BC

STAXB Store A into address BC

LDAXD Load A from address DE

STAXD Store Ainto address DE

XTHL Exchange HL with data at address SP

3-16 ADDRESSING MODES

10.

11.

12.
13.

14.

The immediate addressing instructions are as follows:

LXI Load pair immediate
MVI Load register immediate

The following instructions operate only on the data in registers:

MOV r1,r2 Copyr2tort

XCHG Exchange DE with HL
PCHL Copy HL into PC
SPHL Copy HL into SP

PCHL is sometimes called an indirect Jump.

For XTHL, the L data goes to address SP and the H data goes to
address SP + 1.

Only XTHL and XCHG are exchanges, the others copy the data,
destroying what was there.

EXPERIMENTS 3-17

EXPERIMENTS

Perform Experiments 7, 8, 9, and 10.

Unit 4

INTRODUCTION TO
PROGRAMMING

4-2 INTRODUCTION

CONTENTS
INTRODUCTION 4-3
UNITOBJECTIVES 44
PROGRAMMING LANGUAGES 4-5
PLANNING YOURPROGRAM 4-8
FlowCharts 4-9
Constructing a Flowchart 4-15
Coding 4-18
CONDITIONAL AND UNCONDITIONAL JUMPING 4-22
Condition Codes,or Flags. 4-23
Jumps 4-24
UNITSUMMARY 4-27

INTRODUCTION 4-3

INTRODUCTION

Regardless of how complex your computer system may seem, when it is
viewed from the microprocessor there are only two things you can do. You
can program it, or you can connect hardware and interface it with the
outside world. Anything else is just a variation on one of these two
themes. In this course you are learning how to program the microproces-
sor. This unit is about how to plan your programs and about the j ump in-
structions that allow computer decisions.

. As you have already learned, computers cannot "think.” The decisions a
computer or microprocessor makes are based on the condition flags at
the time of that decision. Further, all computer decisions are yes or no.
There is no room for maybe or any other alternative. Many programs
seem to take a multiple choice, but in fact each decision is divided into
several with only two alternatives. If a computer controlled car ap-
proached an intersection, it would have to divide the three ways so that
the decisions are made as a choice of two. For example, the first choice
might be to either turn, or go straight. If you go straight, no further choice
is needed. If you turn, then there are only two choices: right or left. An
alternative to this would be to make the choices on turning as follows:

1. Turn right (yes or no)
2. Turn left (yes or no)

As a programmer, you will decide which methods your microprocessor
will use to make these decisions. The first major step in programming is
planning. After you have a plan, it is relatively easy to select the instruc-
tions that will follow that plan. The primary focus of this unit is on how
to plan your program.

4-4 UNIT OBJECTIVES

UNIT OBJECTIVES

When you complete this unit you will be able to:

‘\ 1. Explain the differences between machine code, assembly language,
interpretive language, and compiler language.

Y Draw the five basic symbols used in flow charting, and explain the
purpose of each.

3. Develop flow charts that illustrate step- by-step procedures for
solving simple problems.

4. Explain the purpose of conditional and unconditional jumps.

5. Using the programming model of the 8085, trace the data flow and
changes in values during the execution of a jump instruction.

6. Explain the relationship between the condition flags and the
conditional jump instructions for the 8085.

PROGRAMMING LANGUAGES 4-5

PROGRAMMING LANGUAGES

All computers, no matter how simple or complex, operate from instruc-
tions. The sequence of instructions to perform a given task is called a

"\ program. For any computer, there may be many different sets of writ-
ten instructions that can be used. These sets of instructions are called
programming languages, and as a programmer, you may write in any
of these languages.

Programming languages are referred to as either high level or low level,
depending on how close they are to the opcodes that are decoded within
the microprocessor. Languages that are very close to those opcodes are
called low level languages. Languages that are not closely related to
those opcodes are called high level languages.

Another name for the opcodes is machine code or machine language.
Machine code is not normally called a computer language, because you
do not usually write programs in machine code. Instead, you use some
notation for machine code. In this course you have and will be learning
the mnemonics that are called assembly language. For each opcode, there
is at least one mnemonic. You can easily determine which opcode will be
produced by each mnemonic. Assembly language is the lowest level lan-
guage. It is a true programming language, because it allows instructions
that are not specific machine code items. These other instructions are in-
terpreted by the assembler program, and perform such operations as
defining labels and assigning the starting address of the program.

Higher level languages combine several lower level instructions into one
high level instruction. For example, instead of repeatedly moving the
value to the accumulator, checking to see if the port is ready, and then
transferring the value to the output port; a high level language uses a
single instruction such as the word PRINT. Although languages are
usually referred to as either high or low, it can be said that the higher
the language, the more removed from the microprocessor it is. Except for
those parts of the program that deal with specific I/O ports or reserved
memory locations, high level language programs can be entered into dif-
ferent types of computers and executed without change. Higher level lan-
guages are generally easier to learn than low level languages, because
the high level languages are closer to "natural" languages, such as
english.

4-6 PROGRAMMING LANGUAGES

Before a program can be executed by the microprocessor, it must be trans-
lated to machine code. Although you can translate assembly language
"by hand” with paper and pencil, higher level languages require a spe-
cial program to make the conversion. There are three fundamental types
of language translators: assemblers, compilers, and interpreters.
Regardless of the translation process, the program you write is called
source code. The result of the translation is called object code. For
some translators, the object code is machine code, but for others there is
an intermediate level, which although it is called object code, requires
some further translation.

Assemblers are specifically for assembly language. Some assemblers
translate the language in one pass. That means they read the assembly
language program from beginning to end and compose the machine code
as they go. Such assemblers are restricted in that they must encounter
a label definition before it can be used as an operand. Two pass aé-
semblers read the source code twice. The first time, all labels are
evaluated and assigned a numerical value. On the second pass, the final
translation is made that results in object code.

Compilers are quite similar to assemblers, except that most compilers
produce an intermediate code, that requires further linking and trans-
lation. Sometimes assembly language is used as the intermediate code.
When it is required, a linker program joins required subroutines and
generates the machine code.

Interpreters, on the other hand, not only produce executable machine
code, but they also execute that code immediately. This is very useful
when you are learning a language, because you get immediate feedback
on the progress of you program. Like most good things, this has disad-
vantages, too. The primary disadvantage is execution time. Because the
code is translated as you go, it takes time. In contrast, assembly language
programs are usually extremely fast, because the code is tailored to the
specific task. Compiled programs generally fall somewhere in-between,
because they use standard routines that may not be as compact as those
written in assembly language for the specific application.

PROGRAMMING LANGUAGES 4-7

Self-Test Review
1. A set of written instructions used to program a computer is called a
2. Written instructions that have a close correspondence to the
microprocessor’s opcodes are called Jov _level.
3. Written instructions that do not closely correspond to the
microprocessor’s opcodes are called 4, ¢/, level.
4. The program instructions you write are called /27244, ﬂ/b‘—’ code.
5. The translator produces 50v/C < code.
/
6. Most Q]r_ﬂgl_l_tﬁ produce an intermediate code.
7i When you use a/an / M&gg' Jcéafs , your program is executed as
soon as it is translated into machine code.
8. Generally, the fastest executing code is produced from /4 SSep fer S
language.
I
9. The slowest execution is through a/an Q)qﬁ / /vf-— £/

4-8 PLANNING YOUR PROGRAM

PLANNING YOUR PROGRAM

Computer programming is done in three main phases; planning, coding,
and debugging. During the planning phase, you decide what you want
your program to do. In the coding phase you put those plans into the lan-
guage you have selected. The debugging phase includes running the
"finished" program and coding it again until it is working correctly.

Although it is quite common for one person to do all three of these phases,
it is not uncommon to have teams working on a program. One person can
do the planning and another can do the coding. Debugging is then done
by those two working together, or possibly by a third party.

The most important part of computer programming is planning. Proper
planning can save hours of coding and debugging. Although your plans
will not specify which instructions will be used, you should give some
consideration to which language you want to use. The lower the language
level, the more detailed your plans should be.

If someone else is going to do the coding, your plans must be specific
enough so that there is no misunderstanding about the desired results.
But, even if you do your own coding, it is important to plan well. You can-
not depend on your memory, because there may be some time between
when you make your plans and when you write the code. Proper plans
will leave no doubt about what you wanted to have the computer do.

Proper plans also prevent the "little bit better" syndrome that common-
ly plagues commercial programmers. Often, programmers get involved
in refinements and extra features that unnecessarily add time to
program development costs. A good plan will let you know when you are
finished, because you will have done everything that is in the plan. If you
think about that last statement, you will realize that it encompasses all
that your plan should be; i.e. a plan is a definition of the work to be ac-
complished.

The details of your plan depend on the type of program your are writing.
A system program would include the specific ports and addresses
reserved for system use. A data base program, on the other hand, would
clearly define the parameters of the data you expect to work with. It is
important to anticipate as much as you can, and make notes on the as-

PLANNING YOUR PROGRAM 4-9

sumptions you have made. For example, if you are writing a data base
program, be sure to identify the amount of space you want to reserve for
each item. In some cases this is easy, because the length is determined
by tradition. ZIP codes and phone numbers have standard lengths.
Names, however, may contain only a few characters or many.

The notes you make and the hard copy of your plans will answer your
questions as you proceed. You may also have to add to your plan or make
it more specific. Keep your notes. You will need them when you debug
and also later if you need to modify your program.

Flow Charts

A flow chart is a diagram that identifies the sequence of events in a
program. Like the schematic diagram of an electric circuit, a program’s
flowchart allows you to quickly identify the elements in the program. Un-
like the schematic diagram, a flow chart might not be a one-to-one rep-
resentation of the elements that make up the program. For example, if
you are using a high level language, the boxes on the flowchart might
represent each statement in the program. But if you were to look at the
intermediate code, each flow chart box would correspond to several in-
structions.

The level of the flow chart should relate to the programming language
you expect to use. If you are working in assembly language, it might help
to do a high level flow chart, and then use it to construct a low level flow
chart. This would mean converting each box on the high level chart to
several on the low level chart.

4-10 PLANNING YOUR PROGRAM

The five most common flow chart symbols are shown in Figure 4-1. For
discussion purposes, these are referred to as the oval, the diamond, the
circle, the rectangle, and the flow lines, Program flow is always in the
direction of the arrows -- never against the arrow. For all of the open sym-
bols, a description of the operation is written within the symbol. Because
the lines only represent flow, no symbols are required. Notice that these
are only the five most common flowchart symbols. Many people use spe-
cial symbols for display output, printer output, and mass storage. Al-
though these other symbols are generally recognizable, they are not

standard for all programmers.

OPERAT |ON DECISION TERMiINAL
{RECTANGLE) (D] AMOND) (OVAL)
: l
CONNECTOR
(CIRCLE) FLOW LINES
Figure 4-1

The Five most common Flowchart Symbols.

The oval is the symbol for a terminal point in the program. This is prin-
cipally used to mark the beginning and the end of the flowchart. For most
programs, there is only one beginning and one end. However, you may
find it convenient to mark more than one end point. When you write the
code, you should have only one exit from the program, regardless of num-
ber of ends on the flowchart. To further identify the oval as start or stop,
you should write the word start or stop inside the oval.

When preparing the flowcharts for assembly language routines, you may
find that more than one entry point allows you to use the common parts
of the routine for several functions. For example, a routine to display a
hexadecimal value, might contain a routine to display a decimal value.

Figure 4-2 shows how the terminal ovals appear in a flowchart. Notice
the arrow between them. All flowcharts must have a beginning (Start)
and an end (Stop). Therefore, this is simplest flowchart possible.

PLANNING YOUR PROGRAM 4-11

(START)

(STOP)

Figure 4-2
The Terminal Oval.

The diamond symbol is used whenever a decision is needed. Remember,
every decision box will have two, and only two arrows from it. If you think
there should only be one, it is not a decision. If you think there should be
more than two, you are ignoring the limits of digital computers, and you
should reread the introduction of this unit. Because a program may have
multiple paths, you may have two arrows into the diamond, but you must
be sure they are properly marked. In the last section of this unit you will
learn about the decisions that the 8085 can make.

Inside the diamond, you identify what decision is to be made. You must
also identify the output lines to show which alternative they represent.
Be sure that the labels on the output lines correspond to the question
written inside the diamond. For example, although it is considered poor
form, your diamond could say "Which is greater, A or B." With such a
decision, you cannot label the outputs "yes" and "no" but you could use
"A" and "B." Because the microprocessor makes comparisons in this form,
it is better to label your diamond "Is A greater than B."

Figure 4-3 shows four variations on the decision symbol. By custom, the
inputis to the top or to the side, but seldom to the bottom. There is usual-
ly only one input, but two are acceptable. For more than two, the junc-
tion is made prior to entering the diamond. Also, the inputs and outputs
are at the corners of the diamond, so the symbol in the center is not ac-
ceptable. Although true/false or other choices are permitted, the stand-
ard is yes/no.

4-12 PLANNING YOUR PROGRAM

YES

SYMBOL EXAMPLE
e

2
3
4.
5
6

— A=B
< A A=B

<=0r< A<=B
>=0or> A>=B

<orz A< B

7

DESCRIPTION

A and B have the same value,
A'is less than B.

A is greater than B,

A is less than or equal to B.

A is Greater than or equal to B.

A and B do NOT have the same value.

Figure 4-3
The Decision Diamond and Mathematical Relationships.

To make it easier to note the decisions, certain mathematical relationships
are used within the decision box. As shown, items 4, 5, and 6 have alternate
symbols. Greater than or equal (>=) is sometimes represented by a greater
than symbol over aline (). Less than or equal (<=)is sometimes represented
by aless than symbol overaline (<). Not equal (<>)is sometimes represented
by an equal sign with a diagonal line through it (#).

PLANNING YOUR PROGRAM 4-13

The circle is used to mark connection points. In many flowcharts, the
structure is too complex for a single sheet of paper, or the crossing of lines
might lead to confusion. If the connection is to the same page or the num-
ber of pages is few, a single letter or number identifies the connection.
Two circles containing the same letter or number indicates the connec-
tion. To avoid confusion, you should make connections only to one other
point. In other words, only two circles will have the same number. If you
have flow from several points entering a single point, you would have
several connector circles feeding together as shown in Figure 4- 4.

1177

Figure 4-4

The Connection Circle.

When flowcharts require many sheets, some method must be used to
make it easier to determine the location of the other connector circle. Two
of the most commonly used are the page number method and the index
method.

Under the page number method, the circle contains a letter and the page
number of the corresponding connection. For example, on page 5 you
might put a connection to 23A would mean page 23 circle A. On page 23
you would then have a circle with the designation 5A, indicating that the
corresponding connection is circle A on page 5.

Under the index method, all connector circles are identified in pairs, and
a record of the locations is placed in an index. The index simply lists all
connections, and the pages on which they appear. For example, if the pair
of circles marked A appear on pages 1 and 14, the index would have a
listing of "A 1,14" to show those locations.

4-14 PLANNING YOUR PROGRAM

The rectangle symbol is used for all arithmetic, logic, input, output, load,
store, and other operations. In short, anything that is not a terminal, a
decision, or a connection must be an operation. Figure 4-5 shows some
examples of operations. Notice that an operation can have only one out-
put line. More than one output would require a decision. However, it is
permissible to have multiple inputs. As mentioned earlier, depending on
the level of the flowchart, some operations may require several opcodes.
For example, in Figure 4-5 the operations PRINT A and MULTIPLY A*B
require several opcodes.

{2 ’

PRINT MOVE
A A TO B

J J

LOAD
A

e e
J J

Figure 4-5
The Operations Rectangle.
For frequently repeated operations, such as print and multiply, you can
prepare separate low level flowcharts. Then, when you code your program,
refer to that flowchart routine to prepare the code. As you will learn in Unit
5,1t is easy to code the routine once, and then, use it whenever it is needed.

The flow lines are used to connect the other flowchart symbols. You must use
an arrowhead where a line enters a box—a line without an arrowhead is an
output from the symbol. You may use arrowheads at other points to clarify
the sequence of events. Some confusion may result if two flow lines cross but
are not connected. In general, a connection is assumed unless it is obvious
that the lines are not connected.

PLANNING YOUR PROGRAM 4-15

Constructing a Flowchart

You saw an elementary flowchart when you learned about the terminal
symbol. All that remains is to insert the various boxes that define your
program. Obviously, this is a gross simplification of the situation, and what
youreallyneed is a plan of action. To prepare your flowchart, first make alist
of all you want your program to do, and the order you want it done. As an
example, Figure 4-6 lists the items to be done by a simple calculator program.
This list will form a basis for the program, but it is much too simple to be of
any real value to us yet. Also, this may not be the order in which the steps
should be performed, and it does not indicate if any steps should be repeated.

1. Input the first value.

2. Input the operation.

3. Input the second value.
4, Perform the operation.

S Display the results.

Figure 4-6

A List of Program Functions.
Before you draw your flowchart from this information, you must elaborate,
or expand it. For example, it is not enough to say “input the operation;” you
must specify what operations you are going to allow. Other program
considerations, such as allowable values, do not need to be considered now,
unless they affect the procedure. Therefore, it is not necessary to know how
large a value is allowed, but it is necessary to know what number base you
are using.

4-16 PLANNING YOUR PROGRAM

These changes bring us to the expanded list of program functions in
Figure 4-7. Notice the following changes. First, the number base is re-
quested. Second, The operation is requested after the second value. (This
avoids the need for an additional key press to perform the operation.)
Third and last, all possible operations are listed.

—L

Establish number base (Binary, Decimal, Hexadecimal)
Input the first value.

input the second value.

P won

Input the operation.
Add
Subtract
Multiply
Divide

5. Perform the operation.

6. Display the results

Figure 4-7
Elaborated List of Program Functions.
Now you can build a flow chart, but you will have to make some inter-
pretations as you do. For example, the first step says to establish the
number base (binary, decimal, or hexadecimal). Because the flowchart
allows only two way decisions, the base selection will require at least two
decision boxes. You might think it would take three, but you can assume
that if it is not the first or second choice, it must be the third.

PLANNING YOUR PROGRAM 4-17

Similarly, the four arithmetic operations can be done by three decisions
with the assumption of the fourth. Based on this, and including a test to
see if you are through with the calculator, you arrive at the flowchart
shown in Figure 4-8A and 4-8B. The primary reason for showing this in
two pieces is to demonstrate the connector symbols.

((START)
& ; | INPUT SECOND
NUMBER

INPUT OPERAT ION

INPUT THE
BASE
DES IGNAT ION

e [
SET BASE SET BASE SET BASE DIVIDE | IMULTIPLY
TO BINARY TO DECIMAL TO HEXADECIMAL| |||FABST BY| |'NUMBERS FROM FIRST] | NUMBERS
|] —] J]
N/
DISPLAY
THE
INPUT FIRST RESULT
NUMBER
Figure 4-8A Figure 4-8B

Exarmple Flowchart.

4-18 PLANNING YOUR PROGRAM

Coding

Once you have completed your plans and flowchart, you are ready to code
the program. This is not to say that the plans are absolute, concrete, and
unchangeable. However, you must remember that changes from the
planned program usually result in a decrease in quality or an increase
in development time. Another aspect of the problems related to devia-
tions from the plan occurs if the deviations occur during the coding. The
primary symptom of this problem is that the programmer gets so in-
volved in the added feature, that the more important functions are not
given proper treatment.

The language you are using, and your familiarity with it, will determine
whether you can write your code directly from the flowchart. You may
find it helpful, or even necessary, to prepare coding flowcharts for in-
dividual operations in the overall flowchart. For example, the step that
says "input first number” necessarily requires the input of the individual
characters and a test to see if the entry is complete. But if you are work-
ing with assembly language, you may also need to include the tests to
see if a character has been received from the keyboard. As you can see,
the difference between the flowchart in Figure 4-8 and the code for the
program can be considerable.

Another related factor is the interface with the specific computer you are
using. All computers have several levels of software operation. For dis-
cussion purposes, we will call them monitor, BIOS, and kernel. The
monitor is the program in ROM that gets the computer going and
provides some basic functions. The BIOS, basic input/output system, con-
tains the routines for communication with all the standard peripherals.
And, the kernel assigns standard names or labels that associate the
peripherals with the operating system (usually disk based). Properly
written programs make full use of the next level of operation. Therefore,
if your code is written to operate with the operating system, your input
and output with standard peripherals will be through kernel labels and
names that identify the entry points for those routines. If, on the other
hand, you are writing kernel software, you will provide a link to the
BIOS.

PLANNING YOUR PROGRAM 4-19

Unless you are writing code for the lowest levels of control (monitor or
BIOS), you must NOT communicate directly with the “usual” hardware.
Kernel level software allows you to prepare programs that will work with
successively newer generations of a particular machine. For example, the
operation of the 8085 is upward compatible with the operation of the
8088. Similarly, the operation of the 8088 is upward compatible with the
80386 (and there are several levels of compatibility in between). There-
fore, by writing your 8085 programs to work through the kernel for a
particular operating system, your programs will also work on 8088
versions of the operating system, and on 80386 versions of the operating
system. All this works, even though the specific hardware for the newer
machines is different from the older ones.

So, what does all this mean to you as you prepare programs for the 8085
trainer? The answer is that you should make yourself familiar with the
I/O routines and whenever possible, or not specified otherwise, you
should write your programs to make use of those routines. When you
want to send a character to the display, you should send it to the display
subroutine. You should not write a routine that directly addresses the
display.

These are all philosophical aspects of coding. They are very important,
because they help you decide what routines to use, and when you should
use an existing routine or write your own.

The next aspect of coding is selecting the operations you will use. There
are many ways of doing any particular task, and your selection of code will
depend on your need for computation speed or code clarity. These two are
often mutually exclusive, that is, you cannot have both at the same time.
For example; the fastest executing code may rely on some clever bit
manipulation that is difficult to understand by looking at the code. The
more obvious methods of moving and combining data may require
substantially more time to execute. Only a lot of programming experience
and some trial and error coding will determine the best code for a
particular situation. A good programmer needs to continually study to
see what others have done and regularly up-grade his technique.

Two things that will help you are to make notes on where you are storing
data and to keep in mind where data must be for use by the I/O
subroutines. If, for example, a character must be in the accumulator
before it can be sent to the display subroutine, it makes sense to move it
from memory directly to the accumulator, rather than through another

4-20 PLANNING YOUR PROGRAM

register. As another example, let’s say you write a routine to copy data
from one place in memory to another. The number of bytes is indicated

— by B-C, the source address by D-E, the destinati -L. Itis much
M out when
needed later.

To make it easier to remember what is happening, you will want to use
the same registers each time you perform an operation. In many cases
the use of the register is dictated by the instruction set, but in those cases
where you have a choice, keep the choice the same so you can remember
what you have done. However, this is not a substitute for keeping notes.

Perhaps the most important part of coding is to make comments in the
code or on paper to tell you what you have done. Although you may know
something perfectly well when you first generate the code, you may for-
getit if much has happened since you last looked at the code. This is par-
ticularly true of acronyms used as labels. Be sure to make a note of what
that acronym stands for, and also make a note of what that really means.
It is not wrong to identify a variable as SD1. To note that it means side
one may seem trivial but in six months when you look at the code again,
you might forget and think that it means system drive 1. You will also
forget whether side one is the left side or the right side, the top or the
bottom. Further, unless you have made good notes, you may even forget
that the routine solved a tetrahedron instead of a triangle. Comments
are not just nice, they are vital if you ever want to look at the source code
again. Imagine that you have wired your car and used different colors to
identify the circuits, but you did not make a list of those circuits. A year
from now, when the circuit fails, you won’t even know which color wire
you need to follow.

PLANNING YOUR PROGRAM 4-21

Self-Test Review

10. The three phases of computer programming are SesS
Q/ﬂkﬂés , and cod s 23 . .

11. The flow chart symbol for a terminal point is the /70w S5 .

12. The flow chart symbol for a decision is the _,{S/ A 'VZS.

13. The flow chart symbol for a/an <%&"f’4/fdl V is the rectangle.

14. The flow chart symbol for a/an Goagki—c/;z point is the circle.

15. The expression A<>B in a decision box means A / 7\{ B.

4-22 INTRODUCTION TO PROGRAMMING

CONDITIONAL AND UNCONDITIONAL
JUMPING

In the previous section you learned about decision blocks and saw a flow-
chart for a program that looped back to the beginning if the operator
desired. These operations are made possible by conditional and uncon-
ditional jumps, or branches.

As you might guess from these names, conditional jumps correspond to
the diamond, or decision, boxes on the flow chart, and unconditional
jumps may be represented either by circles or simply by a line. The op-
code for an unconditional jump, JMP, is followed by the address, or des-
tination, of the jump. In assembly language that destination is usually
identified by a label. Therefore the mnemonics JMP BEGIN and JMP
8000H would mean the same thing if BEGIN was the label for address

800016.

The conditional jumps are listed in Figure 4-9. Notice that the first four
Jjump when the specified flag is in a zero condition and the last four jump
instructions jump when the specified flag is set to 1.

Mnemonic Meaning Elags Checked
Jump Not Zero Jump if Z=0
Jump No Carry Jump if C=0

Jump Parity Odd Jump if P=0

Jump Positive Jump if S=0
Jump Zero Jump if Z=1

\ JPE

\\

[

! Jump Carry Jump if C=1
1 Jump Parity Even Jump if P=1
|

ﬂ:’l J Jump Minus Jump if S=1
Figure 4-9
Conditional Jumps.

Like the unconditional jump, the opcode for each of these is followed by
the two-byte destination address. When the jump is executed, the next
two bytes are put into the instruction pointer. Consequently, the next in-
struction to be performed will be the opcode at the designated address.
For a conditional jump, the specified flag is tested before the value is
copied to the instruction pointer.

CONDITIONAL AND UNCONDITIONAL JUMPING 4-23

Condition Codes, or Flags.

As you will remember, the flags (condition codes) are set or cleared by
the last arithmetic or logic operation. At this time it becomes more im-
portant what the flags are and what their value means.

The zero flagis set to 1 only if the arithmetic operation resulted in a zero
value. For example, when you subtract ten from ten the result is zero.
What is not as obvious is that the result in the accumulator may also be
zero if the result of the last operation has a value of 25610. For example,
if all bits in the accumulator are 1’s (a value of 25510 or -110) and you per-
form an INR A instruction, the result is zero. Thus, the zero flag would
be set.

The carry flag is set when an overflow or borrow is generated by an arith-
metic operation. Naturally, such a condition might require special con-
sideration. If you are performing a complex math calculation and a
borrow occurs, you may want to adjust the answer to reflect that condi-
tion. As an alternative, you might also want to change the notation and
recalculate so that the value is within range. Either of these would cor-
respond to a decision on the flowchart.

The carry flag can also be controlled by two special opcodes. These are
STC (3716) and CMC (3F16). STC is very straight forward, it stands for
"set the carry” and that is exactly what it does. After an STC opcode is
executed, the carry flag will be set to 1. There will be no other changes.
The CMC opcode toggles the carry flag. Therefore, what ever the carry
flag was before (and you can determine that with a JC or JNC instruc-
tion), after CMC the value in the carry will be changed. If it was a one,
it will be a zero. And, if it was a zero before, it will be changed to a one.
Because these opcodes affect only the carry flag, you can use them
wherever you want to use them. Further, these opcodes are unique, be-
cause the carry flag is the only flag that has special instructions to con-
trol it.

You might question the value of this, but as you will remember, the rota-
tion instructions include the carry, so this bit can appear to be a part of
the accumulator. As such, it is nice to be able to control that single bit.

The parity flag indicates whether the number of bits that are set (1’s) is
even or odd. If the number of 1’s is even (0, 2, 4, 6, or 8) then the parity
flag is set. When the number of 1’s is odd (1, 3, 5, or 7), the parity flag is
cleared to 0.

4-24 CONDITIONAL AND UNCONDITIONAL JUMPING

The sign ﬂaé is used to indicate that the value of the last operation is
negative. What it actually indicates is whether the high bit of the last
operation is set or cleared. As you have already learned, the eight bits of
a byte can represent any of 256 values. Therefore, if the normal values
are numbers from 0 to 25510, the sign flag may not mean the value is
negative, unless the last operation was a subtraction. If you add 12710
and 1, the result will be 1281¢. Because the high bit of value 12810 is set,
the sign flag will be a 1. In writing your program, you must be aware of
the possible values of the numbers before and after the calculation, so
you can interpret the meaning of the flags. When the sign flag is set it
might mean the value is minus, but it might also mean the value is
greater than 12710. You must code the program so that the subsequent
operations are correct in accordance with the meaning of the value.

Jumps

Without jumps your programs could only have a single path. Further, it
could only execute once and you would have to start it again from the
beginning. Programs without jumps are called linear programs, and al-
though there is nothing inherently wrong with linear programs they are,
by nature, very simple.

By using conditional jumps, you can write branched programs. One spe-

& cial type of branch is called a loop. A loop is a program or part of a
program that is repeated. Although you can form a loop with an uncon-
ditional jump, the loop would be continuous, or endless. Endless loops
are usually a problem that must be avoided.

The only way to stop an endless loop is by turning off the computer. One
situation where an endless loop is used is for the monitor program in a
dedicated computer system. Another situation is in troubleshooting,
where you want the same addressing and data patterns to repeat con-
tinuously. In this latter situation, many technicians will include a
keyboard check and conditional exit, so that they do not have to turn off
the computer and reboot to continue.

CONDITIONAL AND UNCONDITIONAL JUMPING 4-25

As you have learned, there are four flags you can test to control the con-
ditional jumps. Your selection of whether the flagis a 1 or a 0 is some-
what arbitrary. The decision is usually based on what provides the fewest
Jjumps. for example if part of the program is executed only under certain
conditions, you would jump around that routine except when the condi-
tion is met. Figure 4-10is a listing of such a program segment.

MOV A,M ;Put value into A

CPI 07BH ;Compare to "{" character

JP NOCHG ;Jump if positive (no change)
CPI 061H ;Compare to "a" character

JM NOCHG ;Jump if minus (no change)
ANI OBFH ;Make upper case (clear bit 6)

NOCHG MOV M,A ;Put revised value back
Figure 4-10
Program with a Conditional Jump.

In this sample, the sign flag was established by comparing the value (in
the accumulator) first with 7B16 and then with 6116. If the value is
greater than the first jump to NOCHG will be taken
and no change will be made. If the value is less than 6116, which is "a",
the second jump will be made. Only values between 6116 and 7A16, ("a"
through "z") will be masked by the ANI OBFH instruction. This will con-
vert those lowercase letters to their corresponding uppercase value.

One of the most important things to consider is the value used for com-
parison. In this example the first value, 7B16, is one more than the
highest allowed value. This is because a zero result is considered posi-
tive. If the value in the accumulator is 7B16 or greater, the remainder
when 7B16 is subtracted (same as compared) will be zero or more. In con-
trast, when the lower value is compared, the jump is made if the result
1s minus. Therefore, a zero should not cause a jump and the value for "a"
must result in a zero. So for the lower end, the comparison is with the
ASCII value for the "a" character. This is important, since if you change
your test from set to cleared, you may also have to modify the operation
before it.

This is not the only way this conversion could be made. Another way you
could do it is to test the carry flag to see if a borrow was required by the
CPI instructions.

4-26 CONDITIONAL AND UNCONDITIONAL JUMPING

In writing programs, you must keep your mind open to the other ways
things can be done. If your program runs too slow, you will probably make
the greatest improvement, by changing your approach. Another thing
you can do, is use the same comparison for more than one conditional
Jump. It is important to keep track of what operations affect the flags
and which ones do not.

Self-Test Review

16. JPO means to jump if the)/(//”7 ©_flagis _L

17. The two jump instructions that test the carry flag are .\ ;Q and
Sm .

18. The parity flag is set (1) whenever the number of bits set (1) by the
last arithmetic operation is€veN 2 ¥ & € f-i_..”f-:_"{ .

19. Programs that have no jumps are called z@ﬁ programs.

20. Each 8085 jump opcode is followed by 2 byte(s) which are put

into the /s Arpron/ ngé_{fg,ﬁ if the jump is to be
taken.

UNIT SUMMARY 4-27

10.

11.
12.

13.

14.

15.

16.

UNIT SUMMARY

The sequence of instructions to perform a given task is called a
program.

The different sets of written instructions that can be used to
program a computer are called programming languages.

Languages that are very close to the opcodes are called low level
languages.

‘Languages that are not closely related to the opcodes are called
high level languages.

Another name for the opcodes is machine code or machine
language.

Assembly language is the lowest level language.

Higher level languages are generally easier to learn than low level
languages.

Before a program can be executed by the microprocessor, it must be
translated to machine code.

There are three fundamental types of language translators:
assemblers, compilers, and interpreters.

The program you write is called source code. The result of the
translation is called object code.

Assemblers are specifically for assembly language.

Compilers normally produce an intermediate code, that requires
further linking and translation.

Interpreters not only produce executable machine code but also
execute that code immediately.

Computer programming is done in three main phases; planning,
coding, and debugging.

During the planning phase, you decide what you want your
program to do.

In the coding phase you convert the plans into the language you
have selected.

4-28 UNIT SUMMARY

17.

18.

19.

20.

21.
22.
23.

24.
25.

26.

27.

28.

During the debugging phase you run the "finished" program and
recode it until it is working correctly.

A flowchart is a diagram that identifies the sequence of events in
a program.

The five most common flow chart symbols are the oval, the
diamond, the circle, the rectangle, and the flow lines.

The oval is the symbol for a terminal point in the program, which
are the beginning and the end.

The diamond indicates a decision.
The circle indicates a connection to another point on the flowchart.

The rectangle is used for all arithmetic, logic, input, output, load,
store, and other operations.

The flow lines connect the other flowchart symbols.

Coding is done after the plans, including the flowchart, are
completed.

Deviations from the plans usually result in greater development
time or reduced program capabilities.

Your program should work with and use the next lower level of
computer control.

The 8085 jump instructions are as follows:

Mnemonic Meaning Flags Checked
JMP Jump always None

JNZ Jump Not Zero Jump if Z=0
JNC Jump No Carry Jump if C=0
JPO Jump Parity Odd Jump if P=0
JP Jump Positive Jump if S=0
JZ Jump Zero Jump if Z=1
JC Jump Carry Jump if C=1
JPE Jump Parity Even Jump if P=1

JM Jump Minus Jump if S=1

UNIT SUMMARY 4-29

29,

30.
31.

32.

33.

34.
35.

The zero flag is set to 1 if the last arithmetic operation resulted in
all zeros in the register.

STC sets the carry flag and CMC compliments it.

The carry flag is set to 1 when an overflow or borrow is generated
by an arithmetic operation.

The parity flag is set to 1 when the number of 1’s in the register
after the arithmetic operation is even.

The sign flag is set to 1 when the value of the last operation is
negative.

The use of conditional jumps results in a branched program.

Aloop is a program or part of a program that is repeated.

4-30 INTRODUCTION TO PROGRAMMING

EXPERIMENTS

Perform Experiments 11, 12, and 13. After you finish the experiments,
return to this unit and complete the Unit Examination.

Unit 5

STACK OPERATIONS AND
SUBROUTINES

5-2 STACK OPERATIONS AND SUBROUTINES

AUTOMATIC STACK ACTIVITY AND SUBROUTINES

INSTRUCTIONS THAT CHANGE THE STACK
UNITSUMMARY
EXPERIMENTS

INTRODUCTION 5-3

INTRODUCTION

Now you are familiar with jump instructions. You might imagine that it
would be nice to not only jump to another part of the program, but to
come back as soon as that routine is done. This capability was thought
of very early in computer development, and all modern microprocessors
have special instructions and facilities to handle this. One significant
facility is the stack.

The stack was invented to store values during temporary excursions from
the main program. When you "call” a routine, the stack holds the return
address. When you "return” from the routine, that address is taken from
the stack and putinto the program counter. The stack is alsoa convenient
place to save values, because they can be quickly restored.

There are several different kinds of stacks, and this unit will show you
the two most common. Although the 8085 uses only one kind in associa-
tion with its stack pointer, you should know how the other kind works.

5-4 STACK OPERATIONS AND SUBROUTINES

UNIT OBJECTIVES

When you complete this unit you will be able to:

~= 1L,

Define the terms call and return, and describe their affect on the
stack.

Write simple programs using the stack to store and retrieve data.

Explain the operations performed by the following instructions:
CALL, CZ, CNZ, CC, CNC, CPO, CPE, CP, CM, RET, RZ, RNZ,
RC, RNC, RPO, RPE, RP, RM, PUSH, and POP.

Identify the two principal types of stacks.
Identify the standard type of stack used by the 8085,

Explain the operation of the stack and stack pointer as they relate to
XTHL, SPHL, LXI SP, DCX SP, INX SP, and the RST
instructions.

Explain the use of assembler directives and identify ORG, CSEG,
DSEG, EQU, DB, DW, and DS.

WHAT IS A STACK 5-5

WHAT IS ASTACK

Before you learn how to work with the stack, it is important to under-
stand what a stack is and what kinds there are. In a computer, a stack
is a series of temporary storage locations that permit easy input and
removal of information. A stack can be able to hold only a single item or
several hundred. One characteristic of stacks is that the items are in con-
secutive locations. It is quite unusual and generally poor practice to
remove, add, or change the items in the center of the stack. Finally, there
are two basic kinds of stacks. They are identified by the way they hand-
le data. They are called FIFO and LIFO.

A FIFO stack performs operations on a first in, first out (FIFO) basis.
This type of operation is also called a queue. (This is pronounced the
same as the letter Q.) The important point is that items are taken out of
the stack in the same order they are inserted. Figure 5-1 demonstrates
this. The information was input in alphabetical order, with the A first.
When data is taken from the stack, the A must come out first, followed
by the B, C, and so forth, until item J is removed.

-—bmcom'nm:l:—:.‘—;

ouT

Figure 5-1
The Queue or FIFO Stack.

Queues are used for instruction processing and other applications, where
the first item must remain first. One advantage of a queue is that it is
easy to determine when it is full. The disadvantage is that you usually
have to "read” through the earlier entries to get to the latest.

5-6 STACK OPERATIONS AND SUBROUTINES

LIFO (Last In, First Out) stacks output the last item first. LIFO stacks are
most useful when the last item in is the first item wanted. Figure 52
illustrates a LIFO stack. Again, item A was the first item placed on the stack.
This time however the items are removed in reverse order and item D must
come off the stack first. This type of stack is sometimes called a “push up”
stack because it resembles plates on a spring loaded holder. As each plateis
put on the stack, the spring yields and the stack goes down. When the top
plate is removed, the spring pushes the next plate up to the same position.

iIl OLfT

>»lwiO|O

Figure 5-2
The LIFO Stack.

The 8085 Stack

The standard stack operation for the 8085 is LIFO (last in, first out).
However, the stack builds toward the low memory address, soit is frequently
imagined as a downward stack. This is because the lowest memory address
is called the “bottom” of memory and the highest address is called the “top”
of memory.

The currentstack addressis determined by the stack pointerregisterin the
CPU. If the stack pointer is at address 6FFF, ; and two items are put on the
stack, the first will go to address 6FFE, , and the second will go to 6FFD,,
which is one address lower. Removing items from the stack is done in reverse
order. In the previous case, the first item removed will be from address
6FFD, ;. The second item removed will come from address 6FFE, .

Because the 8085 stack is part of memory, and must be both written and read,
it must be somewhere in RAM. However, many locations in RAM are
reserved for specific purposes. For example, the ET'S-8085 system uses RAM
below address 6840, .

WHAT IS A STACK 5-7

One of the most important things in working with a stack is that you
must initialize the stack and/or know its current status. It is customary
when working within an operating system for the user to establish and
use a separate stack from the system. For example, if you know the area
from 684016 to 6FFF16 is not used by the system, you might assign a
stack pointer value of 6FFF16. Your main program might then safely
operate starting at address 700016 or higher. Sometimes the operating
system specifies that you can (or must) use the system stack. But regard-
less of what stack you are using, you must always leave the stack and
stack pointer in the same condition as when you found them.

Briefly, consider the situation when your program starts. The stack
pointer is marking the system stack. Your jobis to save that stack pointer
value and establish your own stack pointer. Later, when the program is
over you will have to restore the values.

Although there is more than one way to do this, the tricky part is getting
the current value of the stack pointer. Even though you have learned
some special instructions that involve the stack, such as SPHL and
XTHL, none of these reads the stack pointer. Amazingly, there is only one
instruction that can get this value for you. Recall that the DAD SP in-
struction adds the stack pointer to the HL pair. Therefore, if you zero HL
and DAD SP the result is that the current stack pointer value will be in
the HL register. It is then a simple matter to store HL (SHLD) in a specific
memory location.

With the system stack pointer safely saved, you can establish your own
stack pointer and continue. Before you return control to the system, you
can restore the value with LHLD and SPHL. This seems complicated,
and for that reason many systems that use the 8085 include enough area
for you to use the system stack. Many newer microprocessors have spe-
cial instructions that establish a new stack or restore the old stack with
a single instruction.

5-8 STACK OPERATIONS AND SUBROUTINES

BEGIN LXI H,0 ;Zero out H and L
DAD Sp ;Copy SP into HL
SHLD STKSTR ;Save the stack pointer

. ;This is where the program goes

LHLD STKSTR ;Get SP out of storage
SPHL ;Restore the original stack
END ;This will have the appropriate

; instruction to return to the

; operating system.

Figure 5-3
Stack Control for Program Entry and Exit.

Figure 5-3 illustrates the beginning and end of a program. In some cases
you will have to precede the LXI instruction with an SHLD to save the
old HL value. The specific code that returns you to the operating system
will be different depending on the level you are working with. It will
probably be an RST (You will learn about these in Unit 6.) instruction,
but it may be different under the disk system than at the monitor level.
Further, if your computer works under different disk operating systems,
each might have a different return function. In some systems you just
jump to address 0000;¢.

WHAT IS A STACK 5-9

Self-Test Review
1. FIFQO stands for

2 LIFO stands for
3. Another term for a FIFO stack is a
4

What is the only 8085 instruction that can get the stack pointer into
another register?

5. It is generally poor practice to delete, add, or change items in what
part of the stack?

5410 STACK OPERATIONS \AND SUBROUTINES

/NAUTOMATIC STACK ACTIVITY AND
SUBROUTINES

There are many 8085 instructions that automatically perform certain stack
operations. These are calls and returns. The call and return instructions are
used to construct parts of the program called subroutines. A subroutine is
a program segment that can be performed at any time when required by
another part of the program. Subroutines perform specific functions, such as

displaying something or determining some mathematical value.

The stack is the key to allowing these subroutines to work. When the 8085
encounters a call instruction, two things happen. First, the address of the
next instruction is placed on the stack. This is easily determined from the
value currently in the program counter. Second, the program counter
receives the argument, or destination, of the call.

At the end of the called routine, when you want to return to the place youleft,
you can simply return to the address at the top of the stack. To allow this, the
8085 instruction set contains a number of return instructions. Now, let'’s
examine the call and return elements a little closer.

Figure 5-4 Shows the address values for the stack. For this illustration, the
starting stack pointer value is 6FFF, ;, and the program counter is at 7000, ¢.
When the CALL instruction (CD,) is executed, the address of the next
instruction 7003, is sent to addresses 6FFD, ; and 6FFE, ; as shown. The
stack pointer will be decremented by twoto a value of 6FFD, 4, sothatitpoints

to a new stack address.

Address Content Remarks
6FFC XX
6FFD 03 New stack pointer value. Location contains

Low byte of address 7003 on stack.
6FFE 70 High byte of address 7003 on stack.

——6FFF XX Beginning stack pointer value--empty.
7000 CD First byte of CALL 7007 instruction.
7001 07 Second byte of CALL 7007 instruction.
7002 70 Third byte of CALL 7007 instruction.
7003 C3 First byte of instruction after CALL.
7004 00 Second byte of instruction after CALL.
7005 70 Third byte of instruction after CALL.
7006 76 HLT instruction.
7007 C9 RET instruction.
Figure 5-4

Stack in Action (A Single Call).

AUTOMATIC STACK ACTIVITY AND SUBROUTINES 5-11

The value at 7007, in this case, is an RET (return) instruction. When a
return instruction is executed, the two values starting at the stack pointer
address and the next higher address are returned to the program counter (in
this case, the number 7003, ;) so that will be the next instruction executed.
In this figure, the addresses are listed in order from lowest to highest. This
makes it slightly difficult to read the address values from the listing. This is
the primary reason the comments are listed here

In addition tothe CALL and RET opcodes, the 8085 also haseight conditional
calls and eight conditional returns. Like the conditional jump instructions
you learned about in the last unit, each of these conditional instructions
check a flag to determine whether to make the branch or not. It is important
toremember that the call and return instructions are only related, not bound
together. When you make a conditional call, you do not have to use a
conditional return.

Flag Callif0 Call lf 1 Return if 0 Return If 1
Z (Zero) CNZ CZ RNZ RZ
C (Carry) CNC CC RNC RC
P (Parity) CPO CPE RPO RPE
S (Sign) CP CM RP RM
Figure 5-5
Conditional Calls and Returns.

Figure 5-5 is a list of the flags and the conditional calls and returns that are
related tothem. Like CALL and RET, these instructions work with the stack
and stack pointer registers to effectively change the course of program
execution. Let’s consider some of the uses for these instructions.

You can use the conditional calls to temporarily leave the main path of
program execution and perform some other operation. For example, you
might read the keyboard and compare it to some value. Then, if the value
matches you call the subroutine. If the value does not match, you continue
execution.

Similarly, the conditional return instructions allow you to either return from
the subroutine or continue until another return is encountered. However, it
is important to remember that you must eventually execute a return. You
MUST NOT JUMP back to the main program from a subroutine. For every
executed call, the microprocessor must execute a return. The reason for this
is simple. If you do not return after a call, the stack will still have the return
address. You must be sure that all items placed on the stack are removed or

disposed of properly.

5-12 STACK OPERATIONS AND SUBROUTINES

Regardless of whether you are using the system stack or your own, you
should restore the stack to its previous condition at the end of the sub-
routine. Without changing the stack pointer, this means the items at the
top of the stack are again at the top of the stack. Thus, if your main
program has put items on the stack, it (the main program) will be able
to pick them up again regardless of what has happened in the mean time.
Your subroutine may call other subroutines, which can call still other
subroutines, and at the end the stack will be correct.

Another group of instructions, closely related to CALL are the RST in-
structions. These instructions, RST 0 through RST 7, allow you quick ac-
cess to subroutines in the low end of memory. Like other calls, the RST
instructions begin by putting the next address on the stack. However,
RSTinstruction require only a one byte opcode. You do not need to specify
the destination address, because the RST number (0 to 7) defines the des-
tination. To determine the destination, multiply the RST number by
eight. The result will be the subroutine addresses listed here.

RST Addres
RSTO 0000
RST1 0008
RST2 0010
RST3 0018
RST4 0020
RST5 0028
RSTé 0030
RST7 0038

As you have probably noticed, this leaves only eight bytes for the sub-
routine. To accommodate larger routines, the normal procedure is to put
a JUMP at the RST address. You might think this is a waste, because
the microprocessor has to change the program counter twice in short suc-
cession. This is true, but if the subroutine is used often enough, the two
byte savings at each use quickly makes up for the delay in execution time.
Some programmers think it is smart to determine the value at the RST
point and make the subroutine call directly. This is good, until the sys-
tem is upgraded and the value at the RST address is changed. Then, the
program no longer works. This has happened often on programs for the
IBM PC. The programs work directly with the firmware or hardware,

AUTOMATIC STACK ACTIVITY AND SUBROUTINES 5-13

and therefore would not run on a "compatible” system. Then, both the
user and the programmer get upset. You can avoid this frustration in
your programs by using only the entry points specified and allowed by
the next level of control.

The final point to consider with regard to subroutines and RST instruc-
tions is what happens when one subroutine calls another. This is not com-
plicated. As you have already learned, the stack pointer is decremented
to point to a new location after each call. Therefore, each call (made before
the return) places its own return address on the stack. If several sub-
routine calls are made, the stack will contain several return addresses.
This is why it is so important to know what the stack is doing. Your stack
must have enough room to build without running into other data. Also,
your program must return from each subroutine to the instruction after
the previous call.

Figure 5-6 should help you visualize the stack and the calls. The first
column illustrates how the main program and subroutines are stored in
memory. The second column traces the flow during execution. Notice that

MAIN

END

SUBROUT INES

A I

RET

RET

RET

RET

END

Figure 5-6
Stack in Action (Several Calls).

5-14 STACK OPERATIONS AND SUBROUTINES

any subroutine can call any other subroutine. The third column shows what
is happening to the stack. The most recent return address is always at the
top of the stack. This is called the top of the stack, even though the 8085
builds the stack toward a lower address.

Ifthe subroutines are written to allow it, you can even have a subroutine call
itself. This is called recursion; or when the self-call takes place, the action
is said to be recursive. To allow recursion, the subroutines must be written
so that the activity eventually returns to the higherlevel. Naturally, if your
subroutines are recursive you must have a stack area that is large enough
to hold as many returns as the number of calls that might occur.

AUTOMATIC STACK ACTIVITY AND SUBROUTINES 5-15

Self-Test Review

6. A part of the program that can be called when needed is calleda____

7. What two things happen when a call is executed?

8. What is the mnemonic for a call if carry = 1?
9. What is the mnemonic for an unconditional return?
10. What flag is checked by the CPE instruction?

11. After you return from a subroutine, what should be on the stack? ___

12. What address is called by RST 7?

13. How can you use an RST instruction tocall aroutine that ismore than
eight bytes long?

5-16 STACK OPERATIONS AND SUBROUTINES

INSTRUCTIONS THAT CHANGE
THE STACK

In addition to using the stack to store return addresses for subroutines, you
can use the stack to store other data. To permit this, there are several special
8085 instructions. You have already learned about XTHL, which exchanges
the value in the HL register with the value on top of the stack. But there are
four register pairs in the 8085, and each of them should have some access to
the stack. So they do. To place a register pair on the stack, you use a PUSH
instruction. To retrieve the value and put it back into the register pair, you
use a POP instruction.

One significant thing to notice in all stack activities is that the stack pointer
indicates the last address used by a push. For a pop, the first address to be
popped is the current stack pointer. For consistency, all stack storage and
retrieval operations are performed in two bytes. Therefore, you cannot
PUSH B without C. Similarly, you cannot retrieve a 1-byte register without
its companion. POP B will get both B and C.

The PUSH and POP instructions work with four register pairs; BC, DE, HL,,
and PSW. The first three are quite obvious. PSW, as you may recall, is the
accumulator and the flags treated as a single sixteen-bit register. The
mnemonics and opcodes for the four PUSH and four POP instructions are

listed in Figure 5-7.
Mnemonic Opcode Mnemonic Opcode
POPB C1 PUSHB C5
POPD D1 PUSHD D5
POPH E1 PUSHH E5
POP PSW Fi PUSH PSW F5
Figure 5-7
The PUSH and POP instructions.

The PUSH operation performs the same function for its designated register
pair as the CALL operation performs for the next instruction address. The
registers are stored on the stack and the stack pointer is decremented by 2.
Assume the registers are as shown in Figure 5-8A. If you execute a PUSH B,
the values will change to those shown in Figure 5-8B. Notice that the only
register that is changed is the stack pointer. This is indicated by the value in
the SP register, and the arrow at the side of the memory segment.

INSTRUCTIONS THAT CHANGE THE STACK 5-17

@ MEMORY SEGMENT MEMORY SEGMENT

SP 7000 SP[6FFD| 7000
6FFF 6FFF
Psw | AA | oo | 6FFE psw [Aa [o0 | BB |6FFE
6FFD CC |6FFD
B[BB |cc] 6FFC B{BB | cc| 6FFD
6FFB 6FFB
0| DbD | EE | 6FFA D[DD | EE | 6FFA
6FF9 6FF9
H|[12 | 34 | 6FF8 H 12 | 34 | 6FF8
6FF7 6FF7
6FF6 6FF6
© MEMORY SEGMENT

SP [6FF7| 7000

6FFF

PSW | AA | 00 | BB |6FFE

CC |6FFD

B| BB |cCC| DD |6FFD

EE |6FFB

D| oD | EE | 12 |6FFA

34 | 6FF9

H[12 [34] AA | 6FF8

00 | 6FF7

6FF6

Figure 6-8
Stack Operations.

In some instances it is desirable to store all register values on the stack at the
beginning of the subroutine and restore them at the end of the subroutine.
Itisnot soimportant which registers are pushed first. But, it is vital that they
be popped in proper order so that each register receives its own value. Figure
5-8C shows the stack with all registers pushed.

After all registers are popped, the stack pointer will again point to address
6FFF, , (8 more than the current value). The register values will still be in
memory, but they cannot be easily accessed through the stack related
instructions. However, if you know how many pushes or pops have taken
place, you can adjust the stack pointer to a desired value by using the INX
SP and DCX SP instructions. For example, if you INX SPtwice and then push
an address onto the stack, the next return will go to the pushed value rather
than the instruction after the last call. As you can imagine, such stack
manipulations can be very confusing and you must do them very carefully.

5-18 STACK OPERATIONS AND SUBROUTINES

The LXI SP instruction can be used to set the stack pointer to any
predetermined value. However, because this is an immediate operation, the
value will always be the same, regardless of when the instruction occurs. For
thisreason, you must use it with even more caution (if possible) than the INX

and DCX instructions.

This leads us to a side discussion about labels in assembly language
programs. As you learned earlier, you can use a label to establish the value
in an LXT instruction. This is illustrated in Figure 5-9. The ZERO EQU 0
statement assigns a value of 0 to the label ZERO. Similarly, the label BEGIN
acquires a value equal to the instruction counter when the LXI H,0 instruc-
tion is assembled. What does that mean? The instruction counter for an
assembler counts the bytes required for each instruction. You can establish
a beginning instruction counter value at the beginning of your program with
an ORG statement.

Both the EQU and ORG statements are called pseudo operations or
assembler directives. They do not translate directly to 8085 opcodes, but
instead provide information to the assembler. Unlike the opcode mnemonics,
which are reasonably standard for 8085 assemblers, the assembler directive
mnemonics may vary or simply not exist in different assemblers. Although
most of these are explained by the list of common assembler directives in
Figure 5-10, the DB, DS, DW, and ORG require special explanation.

INSTRUCTIONS THAT CHANGE THE STACK 5-19

ZERO
TRUE
FALSE
QUESTION

STACK
BEGIN

STKSTR
MSG
ADD1

TITLE
STL
SPACE
EQU
EQU
EQU
SET

ORG
DS
LXI
DAD
SHLD
LXi

ELSE

ENDIF

LHLD
SPHL

DS
DB
DW

END

"Pseudo Op Demonstration*
"Listing control®

3
0 SetZERO o 0
0 ;True is when the byte is 00.
-1 ;Just so its not 00.
TRUE ;For this assembly
6FFFH ;Start the program at 6FFF Hex
1 ;Top of stack here
H,0 ZerooutHand L
SP ;Copy SPinto HL
STKSTR :Save the stack pointer
SP,STACK :Establish stack
;This is where the program goes
QUESTION ;Start conditional
;Do this when QUESTION is false
:End of conditional
STKSTR ;Get SP out of storage
;Restore the original stack
2 ;Need iwo bytes here
‘Hello’,FFH ;put message in memory
7000H ;ADD1 points to a value of 7000
;This will have the appropriate
; instruction to return to the
; operating system.
Figure 5-9

Using labels and other assembler directives.

5-20 STACK OPERATIONS AND SUBROUTINES

The DB (define byte) statement puts the ASCII values for the word
"Hello" followed by FF16 in memory. During the program, a register pair
may be pointed to MSG and the message can be accessed. DS (define
space) cause the instruction counter to increment. Thus, the beginning
of the program is at 7000H and the stack pointer will have an unused
address for the first stack operation. DW defines pairs of bytes. This is
useful, because you can write the byte pairs in high-low sequence (7000H)
instead of the low-high (00,70) sequence reguired by the DB instruction.

The ORG, for origin, statement sets the instruction counter in the as-
sembler and determines the actual addresses for the labels used in jumps
and calls. Some assemblers use the CSEG and DSEG statements instead
of ORG. CSEG and DSEG, which stand for code segment and data seg-
ment, are required for 8088 and the compatible 16 bit microprocessors.
The instruction set for the 8085 is a part of the instruction set used for
those more advanced microprocessors. As a result, the source code for the
8085 can also be used for the 8088, but only if the right assembler direc-
tives are used. As with the other assembler directives, you will have to
check the documentation for your assembler to determine the directives
you need to know.

INSTRUCTIONS THAT CHANGE THE STACK 5-21

CSEGn Code Segment Address n is the first code
address.

DB b1,b2 etc. Define Byte Assigns byte-by-byte values to
those locations in memory. Each
item (b1, b2, etc.) is a byte value.

DSn Define Space Reserves n bytes of memory.

DSEGn Data Segment Address n is the first data address.

DW wi,w2,etc. Define Word Assigns word-by-word values to
those locations in memory. Each
item (w1, w2, etc.) is a 2-byte
value.

EJECT Listing control Causes a form feed to the printer
or listing file.

ELSE Conditional Assembly Skips following group of
mnemonics when previous IF was
accepted.

END Identifies the end of the program.

ENDIF Conditional Assembly

EQU Equals Assigns a value to a label.

IF Marks the beginning of conditional
mnemonics and establishes the
condition.

ORG Origin Assigns a value to the assembler's
instruction counter.

SET Assigns a value to a label. Unlike

: EQU, the label of a SET instruction
may be redefined later in the
source code.

STL Subtitle Establishes a subtitle in the listing.

TITLE Title Establishes a title for the listing.

Figure 5-10

Assembler Directives or Pseudo Operations.

And now, a final word on the use of SPHL and XTHL. In some cases it is
desirable to use the DAD instructions to compute a value for the stack
pointer. The result is in the HL pair, and SPHL is the only way to get a
computed stack value into the stack pointer. XTHL is used to adjust a
value currently on the stack. You use XTHL to trade the value into the
HL pair. You can then use DAD instructions to modify it. Finally, by using
XTHL again, you can return the modified value to the stack and restore
the old HL value.

5-22 STACK OPERATIONS AND SUBROUTINES

Self-Test Review

14. What instruction puts a register pair onto the stack?

15. What instruction gets a value from the stack?

16. What instruction adds one to the value in the stack pointer?

17. What instruction subtracts one from the value in the stack pointer?

18. What assembler directive would you use to put a value of 1234H
into memory?

19. What assembler directive establishes the starting address of the
program?

20. What assembler directive assigns a value to a label?

21.

What is another name for assembler directive?

UNIT SUMMARY 5-23

S SO

2

10.

11.

12.

UNIT SUMMARY

A stack is a series of temporary storage locations that permit easy
input and removal of data.

A first in, first out (FIFO) stack is also called a queue.
The 8085 stack is last in, first out.
In an 8085, the lowest address is the top of the stack.

When working with the stack, you must always know what it is
doing.

You may have to initialize the stack before you can use it.

To load the stack pointer into the HL register pair, you must LXI H,0
and then DAD SP.

Subroutines are program segments that can be accessed by other
parts of the program.

When a subroutine can be called from itself, it is said to be recursive.

A call (CALL) is a branch to a subroutine that leaves a return |
address on the stack.

When a call is executed 1) the return address is put on the stack,
and 2) the PC is given the subroutine address (the agrument of
the call).

Conditional calls allow you to execute a subroutine based on the
state of a flag. The conditional calls are as follows:

CNZ Call Not Zero A
CZ Call Zero -
CNC Call Not Carry =
CC Call Carry =
CpO Call Parity Odd =
CPE Call Parity Even =
CP Call Positive =

CM Call Minus S=1

5-24 STACK OPERATIONS AND SUBROUTINES

13.

14.

15.
16.

17.

18.

19.

The return statement (RET) at the end of a subroutine pops the
address from the stack into the program counter.

If a subroutine is called by a conditional call, it need not have a
conditional return. The conditional returns are as follows:

RNZ Return Not Zero Z=0
R2Z Return Zero Z=1
RNC Return Not Carry C=0
RC Return Carry C=1
RPO Return Parity 0Odd pP=0
RPE Return Parity Even P=1
RP Return Positive 5=0
RM Return Minus S=1

An RST is a special call to one of eight predefined addresses.

To determine the address called by an RST n instruction, multiply
the value of n by 8.

A common way to permit an RST subroutine to have more than 8
bytes of code is to put a jump at the RST address.

After a subroutine, the stack should be returned to its previous
condition.

To copy a value from a register pair onto the stack, you use a PUSH
instruction.

UNIT SUMMARY 5-25

20.

21.
22.
23.
24.

25.
26.

To transfer a value from the stack into a register pair, you use a
POP instruction.

The four register pairs are BC, DE, HL, and PSW.
INX SP will add one to the value in the stack pointer.
DCX SP will subtract one from the value in the stack pointer.

Assembler directives do not translate to code, but they do provide
information for the assembler.

Another name for assembler directives is pseudo operation.

The five most common assembler directives are as follows:

DB b1,b2,etc. Define Byte Assigns byte-by-byte values to
those locations in memory. Each
item (b1, b2, etc.) is a byte value.

DSn Define Space Reserves n bytes of memory.

DW w1 w2,.etc. Define Word Assigns word-by-word values to
those locations in memory. Each
itemn (w1, w2, etc.) is a 2-byte

value.
EQU Equals Assigns a value to a label.
ORG Origin Assigns a value to the assembler's

instruction counter.

5-26 STACK OPERATIONS AND SUBROUTINES

EXPERIMENTS

Perform Experiments 14, 15, and 16.

Unit 6

INPUT/OUTPUT
OPERATIONS AND
INTERRUPTS

6-2 INPUT/OUTPUT OPERATIONS AND INTERRUPTS

CONTENTS

INPUTOPERATIONS
SERIALTO

More Interrupts
ResetorRestart
UNITSUMMARY
EXPERIMENTS

INTRODUCTION 6-3

INTRODUCTION

This is the final unit of this 8085 microprocessor programming course. There
are two major items yet to be discussed. The first of these is the input and
output (/O) operations. The second is the way the 8085 handles interrupts.
Before you read about these subjects, let’s briefly review what I/O and
interrupts are.

Input and output are the operations by which the MPU communicates with
the outside world. That is, I/O operations are any operations except memory
addressing and internal register manipulation. While that sounds like a
great deal, it really is not. There are only two I/O commands: IN and OUT.

Theotherinstructions youwill learn in this unitrelate to the 8085 interrupts.
The term interrupts is used for both the operations caused by external
signals to the MPU and the external signals themselves. Thus, when the
MPU receives an interrupt, it performs an interrupt routine.

6-4 INPUT/OUTPUT OPERATIONS AND INTERRUPTS

UNIT OBJECTIVES

When you complete this unit you will be able to do the following:

1. Describe the effects of the following operations: NOP, RIM, SIM,
OUT, IN, DI, and EI.

2. State the difference between the memory addresses and the /O
addresses.

3. State the definition of the word interrupt.

4, Identify the operations that occur when the 8085 receives an
interrupt.

5. Identify the activities that might occur when the MPU responds to
an interrupt or perform an I/O routine.

6. Identify the terms port, "maskable” interrupt, and "non- maskable"
interrupt.

7. List the bits in the 8085 interrupt mask and identify their
significance.

8. State the differences between RST, INTR, and TRAP.

OUTPUT OPERATIONS 6-5

OUTPUT OPERATIONS

The 8085 output operations are performed by the OUT opcode, D316. The
byte following the opcode is the address of the I/O port. The Assembly
language source code for the OUT instruction is simply as follows:

ouT port

The value of port in the 8085 must be between 0 and 25510. Just like a
memory address, the port identifies a location. Circuitry attached to the
address bus and the IO/M line detect which I/O address is used.

A port, as you may recall from Unit 1, is the MPU connection to the out-
side world. The word port is used to identify all of the things associated
with that connection. The address is the port. The physical connector is
the port. Any other hardware required for that connection is called the
port.

Usually, there is an integrated circuit (IC) built into the computer at the
output address. There is a wide range of IC’s that can be used. The most
simple devices are buffers that serve to isolate the output from the data
bus. This prevents changes on the output from affecting other data bus
operations.

Slightly more complicated than a buffer is a latch. The only difference
between a buffer and a latch is that the latch retains the value after the
OUT command, until another value is output to that port address.

To understand how I/O and memory addressing are different, you need
to be aware of three control lines supplied by the 8085 to the computer
circuitry. They are listed in Figure 6-1.

Line Function

RD Read operation

WR Write operation

oM I/O vs. Memory operation

Figure 6-1

The I/O and memory control lines.

6-6 INPUT/OUTPUT OPERATIONS AND INTERRUPTS

The RD and WR lines are used for either I/O or memory. RD is held low
for any read operation, and WR is held low for any write operation. The
IO/M line provides a difference between I/0 addresses and memory ad-
dresses. When the I0/M line is high, the I/O address is selected. When
the IO/M line is low, memory is selected. Of course this requires that the
hardware be connected to these lines as well as the address lines.
However, I/O requires only the bottom eight address lines, because the
highest I/O address is 25519.

A further distinction is that output operations are always from the ac-
cumulator, while memory access can also be made from the B, C, D, E,
H, or L registers. As a result, you must always place the value to be
output in the accumulator before executing the OUT opcode.

In some cases, the I/O activity requires several port addresses. When this
occurs, one address (normally the lowest address)is called the base port
address. For example, if a particular /O port control IC requires eight
(8) addresses, the base port might be B016. The base address would
probably be the one you send data to. Above that you would have other
inputs and outputs such as the control and status registers for that IC.
The output to that port would then require not only outputting the data,
but also the control bytes to those addresses. It might also be necessary
to input the status to determine if the device is ready to accept the data.

In assembly language, it is customary to assign a label to each specific
I/O port or base port. This is done at the beginning of the program, so
that the label is easy to locate and change if necessary. Most assemblers
allow you to refer to the other addresses by providing the label and an
offset. The example in Figure 6-2 shows how this works.

ORG 7000H ;Start the program at address 7000 hex
PORT EQU 0BOH ;LCD port
BEGIN ;Program begins here
;And continues through here
MVI A,03H ;Put control code in accumulator
out PORT ;Send control code to port
MVI A,33H ;Put data code in accumulator
out PORT+1 ;Send data to display (port + 1)
;More program here
END ; And then we are done.
Figure 6-2

Using labels with offsets.

OUTPUT OPERATIONS 6-7

Notice in Figure 6-2 that the value PORT is equal to B016 as set by the
EQU pseudo operation. Then, during the program, the control port, BO1s,
is referred to by the label PORT. The data port, Bl1s, is identified by the
expression PORT+1.

It is quite common to have to send a control code, check a status value,
or both before you can output a value. To check a status value, you would
use the IN opcode as described in the following.

6-8 INPUT/OUTPUT OPERATIONS AND INTERRUPTS

INPUT OPERATIONS

Input operations are similar to output operations, except that the value
is received by the accumulator instead of being output from the ac-
cumulator. It is therefore important to be aware that the accumulator
value will be changed by an IN operation. The value formerly in the ac-
cumulator will be replaced by the value at the input port.

Aside from that, the IN instruction (opcode DB1i6) is the same as the OUT.
Physically though, there is a difference. When the OUT instruction oc-
curs, the WR line is brought low. The hardware detects this to decode the
address. For an IN operation, the RD line is brought low. This is also
detected by the address decoding circuitry. Because these are two
separate signals, it is not necessary for the input and output ports to be
related to each other. In other words, if input port CO016 is the keyboard,
output port CO16 could be the display. These two devices are often thought
of together, but they are not physically related.

This is probably the single most important thing to remember. Just be-
cause you write a value to an output port, does not mean you can read
that value from the same port. The device associated with those two ports
may be entirely different.

By the same token, it may be possible to have the output to a device at
one port and the input from the same device at a different port. The result
could be that you can input through one port the same data that was out-
put to another. However, it is usually most convenient to use the same
port for both input and output to each specific device. It not only makes
it easier to decode in the hardware, it also makes it easier to prepare the
software. Because the ports are the same, you can use the same label to
define input and output.

Figure 6-3 is an example, where input PORT+1 is the status port and
bit 2 indicates that data is ready to be received. Output PORT+1 bit 2 is
aresponse to the other device that we are ready to receive data. The data
is received at input address PORT. Because this is a hypothetical com-
puter, the actual PORT value has been omitted.

INPUT OPERATIONS 6-9

OK EQU
NOTOK EQU
ORG
BEGIN
Y
out
LOOP IN
ANI
JZ
MVI
out
IN
MOV
END

4H ;BIT 2 (0000 0100) SET MEANS OK

0 ;CLEAR ALL BITS WHEN IT IS NOT OK

100H

A,OK ;SET UP AN OK

PORT+1 ;SEND IT QUT

PORT+1 ;INPUT STATUS

4H ;MASK THE OK BIT

LOOP ;LOOP UNTIL READY

ANOTOK ;SET UP ANOT OK

PORT+1 ;TELL THEM TO WAIT

PORT :GET THE DATA

MA ;STORE THE DATA IN MEMORY
Figure 6-3

A Hypothetical Input/Output Exchange.

In this routine, the OK is first sent out to PORT+1 saying we are ready
to receive data. Then, the status bit is sampled to see if the data is ready.
If it is not, another sample is taken. This LOOP is repeated until there
is data available. Immediately after the data is available, the NOTOK
signal is sent so that no new data is sent. Then, the data is retrieved and
placed in memory. This process would be repeated until some signal
(either in the data or in the status) indicated that the message was com-
plete. Because all eight bits of data are received at the same time, this is

called a parallel input.

6-10 INPUT/OUTPUT OPERATIONS AND INTERRUPTS

SERIAL 1/0

Serial data transfer takes place one bit at a time. The 8085 has a special way
of performing serial input and output. There are two connections to the
microprocessor identified as SID (serial input data) and SOD (serial output
data). These two lines are accessed through the RIM and SIM instructions.
A thorough description of these instructions is provided in the section on
interrupts. For now it is only important to understand how the instructions
control serial I/O. Figure 6-4 shows the accumulator values before a SIM

instruction and after a RIM instruction.

A REGISTER BEFORE EXECUTING SIM

D7 Do
soD [soE | X [R7.5 [MSE[M7.5 | Me5 | Ms5]
4 4 A A A 4

A REGISTER AFTER EXECUTING RIM

D7 Do
’SID | 75 | 165 | 155 | IE | M7.5 | M6.5 | M5.5 |
A e J ™ -

Figure 6-4

RST 5.5 MASK

RST 6.5 MASK

RST 7.5 MASK

MASK SET ENABLE
RESETRST 7.5
UNDEFINED

SERIAL OUTPUT ENABLE
SERIAL OUTPUT DATA

INTERRUPT ENABLE FLAG
INTERRUPT PENDING
SERIAL INPUT DATA

T ; INTERRUPT MASKS

Accumulator before SIM and after RIM.

SERIALI/O 6-11

Input

The values after a RIM (Read Interrupt Mask) are easiest to understand.
The high bit is the value that was on the SID line when the RIM was
executed. That value can be used by the other 8085 instructions. For
example, if you want to input an entire 8-bit value, you could perform a
sequence similar to the one in Figure 6-5.

MVI B,0 ;Clear the B register
MVI C7 ;Establish a counter
LOOP ;Repeat this 7 times
CALL WAIT ;Wait for next input
RIM ;Read the interrupt mask
ANI 80H ;AND with 80, to mask the high bit
ORA B ;OR with B
RRC ;Rotate one place to the right
MOV - BA ;Save the resultin B
DCR C ;Decrement counter
JINZ LOOP ;Repeat until through
ONE2GO ;Read last bit
CALL WAIT ;Wait for next input
RIM ;Read the interrupt mask
ANI 80H ;AND with 80, to mask the high bit
ORA B ;OR with B
Figure 6-5

Reading a byte from the serial port.

This is a straight forward routine, except that it ignores what happens
during the WAIT routine, which is not listed. To be sure your are not
reading the same bit twice, there must be some timing consideration.
This is normally controlled by the interrupts, either on a specified time
interval or through an external stimulus.

The other values read by the RIM opcode are the interrupt pending bits,
the interrupt enable bit, and the interrupt mask. These bits may have
nothing to do with the serial input, or they may indicate the timing. The
situation is determined by the hardware and software of the computer
system you happen to be using.

6-12 INPUT/OUTPUT OPERATIONS AND INTERRUPTS

To understand these other bits better, you must learn about the four
maskable interrupts. They are called RST 7.5, RST 6.5, RST 5.5, and
INTR. If any of the first three have occurred, the corresponding bit will
be set(1). This information can be used to determine what course of action
the processor should take. The low four bits of the interrupt mask indicate
which of the four interrupts are permitted. Ifbit 3, IE, is a one, it means
the INTR interrupt can be accepted. The low three bits M7.5, M6.5, and
M35.5 correspond to the other three maskable interrupts.

Output

To set or clear the interrupt mask, you use the SIM (Set Interrupt Mask)
opcode. This will be covered in detail when the interrupts are described.
For now, it is only necessary to worry about the two highest bits, bit 6 and
bit 7. Bit 6 is called serial output enable (SOE), and bit 7 is serial
output data (SOD). To make the SOD line from the 8085 to go high, you
must set both bits 6 and 7. To make the SOD line go low, you must keep
bit 6 high and reset bit 7. If bit 6 is low, the SOD line will not change state,
regardless of the status of bit 7.

The serial output, just like the input, must be timed to correspond to the
requirements of the receiving device. This can be done through interrupts
from the receiving device or from a timer. In the early days of micropro-
cessors, it was not uncommon to use timing loops to control the length of
time between signal transitions. To do this, the time required for each
instruction was carefully determined and the sequence repeated the
required number of times between outputs (or inputs).

One instruction that is useful for adding small increments of time is the
NOP instruction. NOP stands for no operation, and that is just what it
does—nothing. Another use for NOP is to fill a place in memory that
contains an unwanted instruction. That can save you a lot of time when
you are modifying a portion of a program and don't wish to reassemble
and reload the whole program.

The use of timing loops has fallen into disuse, because it is often desirable
to use the microprocessor for other activities while waiting the prescribed
time. Another reason is that by using an external timing source, the
precise number of instructions and their timing is not critical. Therefore,
if a faster microprocessor is used, the code for serial I/O can remain the
same.

SERIAL /0 6-13

Self-Test Review

1. What is identified by the byte following the OUT opcode?

2. What data (where is it located) is output by the OUT opcode?____

3. What control line determines whether an operation is working with
an I/O port or a memory address?

4. Must the IO/M line be high or low for an I/O operation?

5. What control line must be low to do a read operation.

6. What does the mnemonic RIM stand for?

7. Which bit contains the serial input data after a RIM instruction is
executed?

8. What does the mnemonic SIM stand for?

9. Which bits must contain the serial output data before a SIM
instruction is executed?

10. What type of data transfer is made eight bits at a time?

6-14 INPUT/OUTPUT OPERATIONS AND INTERRUPTS

INTERRUPTS

Closely associated to input and output are microprocessor interrupts.
The 8085 has five hardware interrupt inputs: INTR, RST 5.5, RST 6.5,
RST 7.5, and TRAP. The three RST signals and the INTR signals can be
masked, or disabled. TRAP is non-maskable and has the highest priority.
However, no interrupt is processed until the current opcode has com-
pleted its activity.

Interrupt priorities determine which interrupt routine to perform when
more than one interrupt occurs. The priorities are listed in Figure 6-6.If
several interrupts occur at once, the highest priority will be accepted. To
prevent another interrupt from occurring during an interrupt routine,
most Interrupt routines mask the other interrupts until the routine is
completed. As a result, only a TRAP interrupt, which cannot be masked,
can interfere with the execution of the interrupt routine. In all cases, the
PC is pushed onto the stack before the interrupt subroutine is executed.

Name Priority Destination Trigger Type
Address
TRAP 1 24H Rising edge and High level until
sampled
RST75 2 3CH Rising edge (latched)
RST 6.5 3 34H High Level until Sampled
RST5.5 4 2CH High Level until Sampled
INTR 5 See note High Level until Sampled
Note: The address is established by the interrupting device.
Figure 6-6
Interrupt Priority Table.

Also listed in Figure 6-6 are the destination addresses for each interrupt.
The addresses for the RST interrupts are easy to remember, because they
can be computed from the name, in the same manner as the addresses
for the software RST instructions. For example, the destination for RST
5.5 1s 5.5 times 8, or 4410 (2C16). Similarly, the destination for RST 7.5
is 8 times 7.5, or 6010 (3C16). You can also think of TRAP as TRAP 4.5,
because that is the interrupt destination (2416).

INTERRUPTS 6-15

Although the RST and TRAP interrupts perform as though they are
executing a restart (RST) instruction, the instruction is not read from
memory. It is part of the microprocessor. The INTR instruction performs as
though it is fetching an instruction. But instead of reading memory, it just
reads the data bus. Whatever value is there is used as the next instruction.
The 8085 depends on the interrupting device to supply the proper RST (or
other) instruction. The INTA signal from the 8085 must be read by the
interrupting device and that device must supply an instruction to the data
bus.

The 8085 was designed to be upward compatible with the 8080 MPU. As a
result, there are different instructions toenable or disable the INTR and RST
interrupts. The 8080 had only one maskable interrupt, INT. This corre-
sponds to the INTR interrupt in the 8085. So that the same code can be used
for both chips, the 8085 supports the EI and DI opcodes to enable and disable
the INTR line. DI disables the interrupt, and EI enables it. As you learned
previously, you can determine whether the INTR interrupt is enabled by
checking bit 3 after a RIM instruction.

To enable, or disable, the RST interrupts you supply a value in the
accumulator and execute a SIM instruction. When clear, bits 0, 1, and 2
enable RST 5.5, RST 6.5, and RST 7.5 respectively. To change the interrupt
mask, you must also set bit 3. This allows you to work with the serial output
through bits 6 and 7, without changing the interrupt mask.

Recall that no interrupt is processed until the current opcode has completed
its activity. However, RST 7.5 is supposed to be triggered by a rising signal
on the RST 7.5 line. Because the service routine cannot be started until the
current instruction is done, it is possible for the RST 7.5 signal togolow again
before it is answered. To prevent this, the 8085 has an internal latch that
holds the RST 7.5 after a rising edge. This latch will retain the RST 7.5 until
it is cleared. You clear the latch by setting bit 4 of the accumulator and
executing a SIM instruction. If the RST 7.5 mask bit is still clear, this action
reenables the RST 7.5 line.

6-16 INPUT/OUTPUT OPERATIONS AND INTERRUPTS

Bits 0, 1, and 2 are also used when you read the interrupt mask. By check-
ing these bits, you can see which of the RST interrupts are enabled, and
which ones are disabled. You should think of the interrupt mask as a spe-
cial input and output port. Notice that the three low bits of the input cor-
respond in functions to the output. In fact, the input values are
determined by the output of latches in the 8085. You set those bits by
outputting values with the SIM instruction, and can then read the
latches with the RIM instruction. This is easier to understand, when you
think of the EI and DI instructions. EI and DI set or clear the INTR in-
terrupt mask. You can determine whether it is set or cleared by check-
ing bit 3 after a RIM instruction.

RST 7.5 is not only the highest priority (except TRAP and RESET), it
has the highest starting address. So what? You might ask. Because it has
the highest starting address, there is a large amount of memory avail-
able for its routine. You do not need to use a Jump to allow for addition-
al space. This was probably one of the reasons it was selected to have the
highest priority.

More Interrupts

Often, it is desirable to have more than five devices causing interrupts.
This is easily done, if you associate the interrupts with an I/O port. You
know that the microprocessor can determine which type of interrupt oc-
curred by reading the interrupt mask and seeing which interrupts are
waiting (bits 4, 5, and 6). You can do the same thing with each interrupt
signal. Have each interrupting device control a certain bit of an input
port. Then when the interrupt occurs, your interrupt routine can read
that port and determine which device caused the interrupt.

From this you may have noticed a pattern in responding to interrupts.
There are six principal steps as follows:

1. Mask out any other interrupts by clearing the mask and using the
DI instruction.

Store the registers.

Determine the cause of the interrupt.
Respond to the cause of the interrupt.
Restore the registers.

S s N

Reenable the interrupts by setting the mask and using the EI
instruction.

INTERRUPTS 6-17

Let’s examine each of these steps in more detail.
The first step is to mask out other interrupts.

The second step is to store the register values. You learned how to do this
in the last unit. All that is usually required is a quick series of PUSH in-
structions. However, you must perform part of this step before you
coomplete the first step because you cannot put the mask into the ac-
cumulator and set it until the acumulator has been stored. Therefore,
you begin your interrupt service routine with DI to prevent the INTR
signal from getting in. Next, PUSH PSW so you can use the accumulator.
Then you can set up your interrupt mask and execute a SIM instruction.
after that you will have time to push the remaining registers.

The third step is to identify the cause of the interrupt. Unless more than
one device is attached to the interrupt line, this is determined by the des-
tination address. If more than one interrupt is attached to a given line,
the routine for that interrupt will have to read some value to determine
the cause.

Fourth, the routine must respond to the cause of the interrupt. This is
the part of your routine that "takes care" of what has happened. Inter-
rupts are used for many things. If the interrupt was from the keyboard,
you may have to store the value in a buffer so that it can be used later,
or you may need to perform some operation immediately. If the interrupt
is from a timer, you may update a clock value, receive the next serial bit,
or perform some other needed service. If the interrupt is from a power
detector, it may be necessary to close all I/O files immediately. In such
cases, the second step (saving the registers) might not be needed.

Fifth, after the cause of the interrupt has been attended, your routine
can get ready to return to its normal operation. To return to normal, all
the registers must be restored to their previous values. This is the fifth
part of an interrupt service routine.

With the registers properly restored, there is a sixth and final step, your
routine should make before it returns control to the normal program. The
interrupts must be reenabled by setting the interrupt mask and execut-
ing an El instruction. Of course it is quite possible that once the inter-
rupts are reenabled another interrupt may take control of the
microprocessor’s operation. If so, the whole routine may be repeated.

6-18 INPUT/OUTPUT OPERATIONS AND INTERRUPTS

Reset or Restart

The reset signal is a special interrupt. It resets the instruction pointer
to 000016, but it does not store any values on the stack. Therefore, the
reset is a JMP to zero, and not a CALL. This poses a slight problem in
regard to the RST 0 instruction, which also has a destination of address
0. To return from the RST 0, the subroutine should use an RET opcode.
But because the RESET does not put a return address on the stack, the
destination of a RET instruction might be anything. How is an RST 0 in-
struction different from the hardware reset?

Operationally, the only difference is that the RST pushes a return ad-
dress onto the stack. To allow for this, you must make some test before
executing a return from this routine. The simplest approach is to not
provide a return, and say that you cannot use RST 0. Because the RESET
routine reinitializes the stack, this is the approach used in most 8085
computers. The effect is that executing RST 0 does the same thing as
pressing the reset button. This is considered the best approach.

The only true alternative is to make a test to determine the conditions.
This is difficult, because you you cannot check the stack pointer to see if
it has changed from its original value. However, the stack pointer value
is not established by the microprocessor on reset, but by the routine,
therefore you cannot say what value it will have on power-up. It might
happen to match a valid value. This is true for all internal registers.

The approach used by some manufacturers is to provide a register, or
latch, at a certain /O port, that is cleared when the reset signal occurs.
If this port contains any value but zero, you can assume the computer
was operational and the restart at zero was not a reset.

INTERRUPTS 6-19

Self-Test Review

3 1

12.
13.

14.

15.

What are the five hardware interrupt signals to the 8085?

What is the destination of the RST 7.5 interrupt?

How much room is there between the beginning of the RST 7.5
service routine and the beginning of the next fixed destination
interrupt routine?

Where does the 8085 look to find the instruction after an INTR?

What is the first thing the interrupt service routine should do?

6-20 INPUT/OUTPUT OPERATIONS AND INTERRUPTS

10.

UNIT SUMMARY

The 8085 OUT opcode, D336, requires two bytes. The second byte is
the I/O port.

The 8085 IN opcode, DB1g, requires two bytes. The second byte is
the I/O port.

8085 I/O ports have addresses from 0 and 25510.
For /O addressing, the IO/M line must be high.
The three 8085 /O and memory control lines are as follows:

Line Function

RD Read operation

WR Write operation

IO/M /O vs Memory operation

I/O operations are always to or from the accumulator.

A single address used to identify a group is called the base port
address.

The 8085 can perform serial I/O through the SID (serial input data)
and SOD (serial output data) lines.

The SID and SOD lines are accessed by the RIM and SIM
instructions.

RIM reads the following values to the accumulator:

Bit Value

0 Mask for RST 5.5

1 Mask for RST 6.5

2 Mask for RST 7.5

3 Interrupt Enable (INTR mask)
4 Pending RST 5.5

5 Pending RST 6.5

6 Pending RST 7.5

7

Serial input data (SID)

UNIT SUMMARY 6-21

11.

12,

13.

14.
15.
16.
17.

18.

SIM sets the following values from the accumulator:

Bit Value

0 Mask for RST 5.5

1 Mask for RST 6.5

2 Mask for RST 7.5

3 Mask set Enable (RST masks)
4 Reset RST 7.5

5 (Undefined)

6 Enable SOD

7 Serial output data (SOD)

NOP is a do nothing opcode that takes up time and space.

The 8085 has five interrupt inputs with the following priorities,
destinations, and characteristics:

Name Priority Destination Trigger Type

Address
TRAP 1 24H Rising edge and High
level until sampled
RST7.5 2 3CH Rising edge (latched)
RST 6.5 3 34H High Level until Sampled
RST5.5 4 2CH High Level until Sampled
INTR 5 See note High Level until Sampled

Note: The address is established by the interrupting device.

The destination for RST 5.5, RST 6.5, and RST 7.5is the RST number
times 8.

You can also think of TRAP as TRAP 4.5, because of its destination
(24,).

INTR fetches an instruction from the data bus.

The INTA signal from the 8085 is read by the interrupting device.
That device must supply the instruction to the data bus.

EI and DI opcodes enable and disable the INTR line.

6-22 INPUT/OUTPUT OPERATIONS AND INTERRUPTS

19.

20.

21.
22.

Interrupt service routines contain the following six principal steps.

1.

S oo w

Store the registers.

Mask out any other interrupts by clearing the mask and
using the DI instruction.

Determine the cause of the interrupt.
Respond to the cause of the interrupt.
Restore the registers.

Reenable the interrupts by setting the mask and using the EI
instruction.

The reset signal is a special interrupt, that resets the instruction
pointer to 00001s.

Reset does not store any values on the stack.

You must be careful when using RST 0, which has the same
destination as reset, because the reset routine cannot have a
return instruction.

EXPERIMENTS 6-23

EXPERIMENTS

You are now ready to perform Experiment 17, 18,and 19.

Appendix A

The 8085 Instruction Set

A-2 The 8085 instruction Set

Opcodes and Pseudo Opcodes
Symbols and Abbreviations

The following symbols and abbreviations are used in this appendix.
SYMBOL MEANING
accumulator Register A

addr a 16-bit address quantity
data an 8-bit data quantity
data 16 16-bit data quantity
byte 2 the second byte of the instruction.
byte 3 the third byte of the instruction.
port the 8-bit port address
1, 1l, 12, ete One of the registers A, B, C, D, E, H, or L.
TIT the binary pattern designating an 8-bit register.
111=A
000=B
001=C
010=D
0l11=E
100=H
101=L
110 (not allowed) Used in M instruction.
Tp One of the register pairs:

B means registers B and C, with B as the high byte.

D means registers D and E, with D as the high byte.

H means registers H and L, with H as the high byte.

PSW means registers A and the flags, with A as the high byte.
SP means the stack pointer.

PC means the program counter.

rh the first (high order) register of a designated pair.
1l the second (low order) register of a designated pair.
RR the binary pattern designating a 16-bit register pair.
00=B
01=D
10=H
11=SP
PC the 16-bit program counter register (PCH and PCL are used to refer to

the high-order and
low-order bytes, respectively.)

SP the 16 bit stack pointer register (SPH and SPL are used to refer to the
high-order and
low-order bytes, respectively.)

Tm bit m of the register r (bits are numbered from low to high 0 through 7,

normally left to right)

Opcodes and Pseudo Opcodes A-3

The condition flags:

AC Auxiliary carrybit 4 of the Flag Byte.

(onY Carry bit 0 of the Flag Byte.

P Parity bit 2 of the Flag Byte.

S Sign bit 7 of the Flag Byte.

Z Zero bit 6 of the Flag Byte.

() The contents of the memory location or registers enclosed in
parentheses.

— "Is transferred to"

N Logical AND

F Exclusive OR

\/ Inclusive OR

+ Addition

- Two's complement subtraction

> Multiplication

R "Is exchanged with" _
The one’s complement (e.g. A)

n The restart number 0 through 7

NNN The binary representation 000 through 111 for restart number 0

through 7, respectively.

A-4 The 8085 Instruction Set

Alphabetical Listing of Opcodes and Pseudo
Opcodes (Assembler Directives)

The assembler directives in this appendix are typical of those used by
8085 assemblers. The particular assembler your are using will most like-
ly have some that are not listed and also not have some of those that are
listed. However, these functions are typical of the types of directives you
will want to use.

ACI data (Add immediate with carry) 1100 1110 (CE16)

(A) —(A) + (Byte 2) + (CY)

The content of the second byte of the instruction and the content of
the CY flag are added to the contents of the accumulator. The result
is placed in the accumulator.

Flags: Z,S,P,CY,AC

ADCM (Add memory with carry) 1000 1110 (8E1g)

(A) —(A) + (HXL) + (CY)

The contents of the memory location whose address is contained in
the H and L registers and the content of the CY flag are added to the
contents of the accumulator. The result is placed in the accumulator.

Flags: Z,S,P,CY,AC

ADCr (Add register with carry) 1000 1rrr (8816 + rrT)

(A) —(A) + () + (CY)

The content of register r and the content of the CY flag are added to
the contents of the accumulator. The result is placed in the
accumulator,

Flags: Z,S,P,CY,AC

ADDM (Add memory) 1000 0110 (8616)

(A) — (A) + ((HXL))

The content of the memory location whose address is contained in the
H and L registers is added to the contents of the accumulator. The
result is placed in the accumulator.

Flags: Z,S,P.CY,AC

All mnemonics Copyright Intel Corporation 1989

Alphabetical Listing of Opcodes and Pseudo Opcodes (Assembler Directives) A-5

ADDr (Add register) 1000 Orrr (8016 + rrr)

(A) —(A) +(r)

The content of register r is added to the contents of the accumulator.
The result is placed in the accumulator.

Flags: Z,S,P,CY,AC
ADI Data (Add immediate) 1100 0110 (C618)

(A) — (A) + (byte 2)

The content of the second byte of the instruction is added to the
contents of the accumulator. The result is placed in the accumulator.

Flags: Z,5,P,CY,AC
ANAM (AND memory) 1010 0110 (A6186)

(A) — (A)/\ ((H)(L))

The content of the memory location whose address is contained in the
H and L registers is logically anded with the contents of the
accumulator. The result is placed in the accumulator. The CY flag is
cleared.

Flags: Z,S,P,CY,AC
ANATr (AND register) 1010 Orrr (AO16 + rrr)

A) — AN @

The content of register r is logically anded with the content of the
accumulator. The result is placed in the accumulator. The CY flag is
cleared.

Flags: Z,S,PCY,AC
ANI data (AND immediate) 1110 0110 (E616)

(A) — (AN (byte 2)

The content of the second byte of the instruction is logically anded
with the contents of the accumulator. The result is placed in the
accumulator. The CY and AC flags are cleared.

Flags: Z,S,P,CY,AC

All mnemonics Copyright Intel Corporation 1989

A-6 The 8085 Instruction Set

CALL addr (Call) 1100 1101 (CD1i6)

(SP) — 1) — (PCH)
(SP)— 2) — (PCL)
(SP) — (SP) -2

(PC) «— (byte 3)(byte 2)

The high-order eight bits of the next instruction address are moved to
the memory location whose address is one less than the content of
register SP. The low-order eight bits of the next instruction address
are moved to the memory location whose address is two less than the
content of register SP. The content of register SP is decremented by 2.
Control is transferred to the instruction whose address is specified in
byte 3 and byte 2 of the current instruction.

Flags: none
CC addr (Carry call) 1101 1100 (DC1¢)

IF (CY)=1
((SP)— 1) — (PCH)
((SP) — 2) — (PCL)
(SP) —(SP) -2
(PC) — (byte 3)(byte 2)

If the carry flag is set, the actions specified in the CALL instruction
are performed; otherwise, control continues sequentially.

Flags: none

CM addr (Minus call) 1111 1100 (FCisg)

IF (S)=1
((SP) — 1) — (PCH)
((SP) — 2) — (PCL)
(SP) — (SP) - 2

(PC) — (byte 3)(byte 2)

If the sign flag is set, the actions specified in the CALL instruction
are performed; otherwise, control continues sequentially.

Flags: none

All mnemonics Copyright Intel Corporation 1989

Alphabetical Listing of Opcodes and Pseudo Opcodes (Assembler Directives) A-7

CMA (Complement accumulator) 0010 1111 (2F16)

(A) — (A)

The contents of the accumulator are complemented (zero bits become
1, one bits become 0). No flags are affected.

Flags: none
CMC (Complement carry) 0011 1111 (3F1s)

(CY) — (CY
The CY flag is complemented. No other flags are affected.
Flags: CY
(_CMPM) (Compare memory) 1011 1110 (BE16)
(A) — ((HXL))

The content of the memory location whose address is contained in the
H and L registers is subtracted from the accumulator. The
accumulator remains unchanged. The condition flags are set as a
result of the subtraction. The Z flag is set to 1if (A)=((H)(L)). The
CY flag is set to 1if (A)<((H)(L)).

Flags: Z,S,P,CY,AC
CMPr (Compare register) 1011 1rrr (B816 + rrr)

(A) -

The content of register is subtracted from the accumulator. The

- accumulator remains unchanged. The condition flags are set as a
result of the subtraction. The Z flag is set to 1if (A)=(r). The CY
flag is set to 1if (A)<(r).

Flags: Z,S,PCYAC

All mnemonics Copyright Intel Corporation 1989

A-8 The 8085 Instruction Set

CNC addr (No carry call) 1101 0100 (D416)

IF (CY)=0
((SP) — 1) — (PCH)
((SP) — 2) — (PCL)
(SP) — (SP) -2
(PC) — (byte 3)(byte 2)

If the carry flag is not set, the actions specified in the CALL
instruction are performed; otherwise, control continues sequentially.

Flags: none
CNZ addr (Not zero call) 1100 0100 (C41¢)

IF (Z)=0
((SP)— 1) — (PCH)
((SP) — 2) — (PCL)
(SP) —(SP)-2
(PC) — (byte 3)(byte 2)

If the zero flag is not set, the actions specified in the CALL
instruction are performed; otherwise, control continues sequentially.

Flags: none
CP addr (Plus call) 1111 0100 (F416)

IF (S)=0
((SP)— 1) — (PCH)
((SP) — 2) — (PCL)
(SP) —(SP) -2
(PC) — (byte 3)(byte 2)

If the sign flag is not set, the actions specified in the CALL
instruction are performed; otherwise, control continues sequentially.

Flags: none

All mnemonics Copyright Intel Corporation 1989

Alphabetical Listing of Opcodes and Pseudo Opcodes (Assembler Directives) A-9

CPE addr (Parity even call) 1110 1100 (ECis)

IF (P)=1
((SP) — 1) — (PCH)
((SP) — 2) « (PCL)
(SP) «— (SP) -2

(PC) — (byte 3)(byte 2)

If the parity flag is set, the actions specified in the CALL instruction
are performed; otherwise, control continues sequentially.

Flags: none
CPI data (Compare immediate) 1111 1110 (FE1s)

(A) - (byte 2)

The content of the second byte of the instruction is subtracted from
the accumulator. The accumulator remains unchanged. The condition
flags are set as a result of the subtraction. The Z flag is set to 1if
(A)=(byte 2). The CY flag is set to 1if (A)<(byte 2).

Flags: Z,S,P,CY,AC
CPO addr (Parity odd call) 1110 0100 (E41s6)

IF (P)=0
((SP) — 1) — (PCH)
((SP) — 2) —(PCL)
(SP) — (SP)-2
(PC) «— (byte 3)(byte 2)

If the parity flag is not set, the actions specified in the CALL
instruction are performed; otherwise, control continues sequentially.

Flags: none

All mnemonics Copyright Intel Corporation 1989

A-10 The 8085 Instruction Set

CZ addr (Zero call) 1100 1100 (CC1s)

IF (Z)=1
((SP) — 1) — (PCH)
((SP) — 2) «— (PCL)
(SP) —(SP) -2
(PC) «— (byte 3)(byte 2)

If the zero flag is set, the actions specified in the CALL instruction
are performed; otherwise, control continues sequentially.

Flags: none
DAA (Decimal adjust accumulator) 0010 0111 (2716)

The eight-bit number in the accumulator is adjusted to form two 4-bit
Binary-Coded-Decimal digits by the following process:

1. If the value of the least significant 4 bits of the accumulator is
greater than 9 or if the AC flag is set, 6 is added to the
accumulator.

2. If the value of the most significant 4 bits of the accumulator is
greater than 9 or if the CY flag is set, 6 is added to the most
significant 4 bits of the accumulator.

Flags: Z,S,P,CY,AC
DADrp (Add register pair to H and L) OORR 1001 (0916 + RR*16)

(HXL) «— (HXL) + (rh)r])

The content of register pair rp is added to the content of register pair
H and L. The result is placed in register pair H and L. NOTE: Only
the CY flag is affected. It is set if there is a carry out of the double
precision add; otherwise it is cleared.

Flags: CY

All mnemonics Copyright Intel Corporation 1989

Alphabetical Listing of Opcodes and Pseudo Opcodes (Assembler Directives) A-11

DB (Define byte) Assembler Directive

The DB pseudo defines byte contents. The DB pseudo is of the form:
Label DB iexpl,...,iexpn

The integer expressions iexp1 through iexpn are expressions which
evaluate to 8-bit values. For the DB pseudo, a long string can be
substituted for an expression. The long string is a character string of
one or more characters delimited by single quotes () or double quotes
(™). You can put a single quote mark (or one used as an apostrophe) in
a string enclosed by double quotes, or by putting two single quote
marks together. Each of the expressions is converted into an 8-bit
binary number and stored in sequential memory locations.

DCRM (Decrement memory) 0011 0101 (3516)

((HXL)) — (HXL) - 1

The content of the memory location whose address is contained in the
H and L registers is decremented by one. NOTE: All condition flags
except CY are affected.

Flags: Z,5,PAC
DCRr (Decrement register) 00rr r101 (0516 + rrr*8)

) —@m-1

The content of register r is decremented by one. NOTE: All condition
flags except CY are affected.

Flags: Z,S,PAC
DCXrp (Decrement register pair) OORR 1011 (0B1s + RR*16)

(rthXr]l) — ch)(rl) -1

The content of register pair rp is decremented by one. NOTE: No
condition flags are affected

Flags: none

All mnemonics Copyright Intel Corporation 1989

A-12 The 8085 Instruction Set

DI (Disable interrupt) 1111 0011 (F316)

The INTR interrupt is disabled immediately following the
execution of the DI instruction.

Flags: none
DS (Define space) Assembler Directive

The define space pseudo (DS) reserves a block of memory during
assembly. This pseudo may be used to set up a buffer area or to define
any other storage area. The DS pseudo causes the assembler to
reserve a number of bytes.

DW (Define word) Assembler Directive

The define word pseudo (DW) defines word constants. Data words are
2-byte values which are placed into memory space, low-order byte
first. NOTE: Strings greater than two characters long are not allowed
when you are using the DW pseudo.

EI (Enable interrupt) 1111 1011 (FB16)
The INTR interrupt is enabled following the execution of the EI
instruction.
Flags: none

EJECT (Listing control) Assembler Directive

The EJECT pseudo causes a new page to be started. When the
assembler processes an EJECT pseudo, the output device is
instructed to move to the start of a new page during the listing.

ELSE (Conditional assembley) Assembler Directive

The ELSE pseudo toggles the state of the assembly conditions. If the
conditional assembley flag is set to skip assembling source code, it is
changed so source code is now enabled. If lines of source code prior to
encountering the ELSE pseudo are being assembled, those following
the ELSE pseudo are skipped until an ELSE, ENDIF, or END is
encountered. NOTE: The ELSE segment must appear after an IF
statement, but before the associated ENDIF statement. (See IF and
ENDIF.)

END (End program) Assembler Directive

All mnemonics Copyright Intel Corporation 1989

Alphabetical Listing of Opcodes and Pseudo Opcodes (Assembler Directives) A-13

The END pseudo indicates the end of the program. If the END
statement is missing, the assembler generates one.

ENDIF (Conditional assembley) Assembler Directive

The ENDIF pseudo indicates the end of a block of source code
designated for conditional assembly. Assembly resumes regardless of
the current assembly state (assembling or skipping) when the ENDIF
conditional assembly pseudo occurs.

EQU (Define label) Assembler Directive

The Equate pseudo (EQU) is used to assign an arbitrary value to a
symbol. This label may not be redefined by subsequent use as a label
in any other statement.

HLT (Halt) 0111 0110 (7616)

The processor is stopped. The registers and flags are unaffected. The
MPU will resume execution when it receives an interrupt or reset.
HLT causes a wait condition.

Flags: none
IF (Conditional assembley) Assembler Directive

The IF pseudo conditionally disables assembly of any statement
following the IF pseudo operator. (See also ELSE and ENDIF.)

IN port (Input) 1101 1011 (DB1s)

(A) — (data)

The data placed on the eight bit bidirectional data bus by the
specified port is moved to register A.

Flags: none

All mnemonics Copyright Intel Corporation 1989

A-14 The 8085 Instruction Set

INRM (Increment memory) 0011 0100 (3416)

((HX(L)) — ((HXL) + 1

The content of the memory location whose address is contained in the
H and L registers is incremented by one. NOTE: All condition flags
except CY are affected.

Flags: Z,S,PAC
INRr {(Increment register) 00rr r100 (0416 + rrr*8)

T —(@+1

The content of register r is incremented by one. NOTE: All condition
flags except CY are affected.

Flags: Z,S,PAC
INXrp (Increment register pair) O00RR 0011 (0316 + RR*16)

(rhXr]) — h)(rD + 1
The content of register pair rp is incremented by one. NOTE: No

condition flags are affected
Flags: none

JC addr (Carry jump) 1101 1010 (DA16)
IF (CY)=1

(PC) — (byte 3)(byte 2)

If the carry flag is set, control is transferred to the instruction whose
address is specified in byte 3 and byte 2 of the current instruction:
otherwise, control continues sequentially.

Flags: none
JM addr (Minus jump) 1111 1010 (FA1e)
IF (S)=1
(PC) «— (byte 3)(byte 2)

If the sign flag is set, control is transferred to the instruction whose
address is specified in byte 3 and byte 2 of the current instruction:
otherwise, control continues sequentially.

Flags: none

All mnemonics Copyright Intel Corporation 1989

Alphabetical Listing of Opcodes and Pseudo Opcodes (Assembler Directives) A-15

JMP addr (Jump) 1100 0011 (C316)
(PC) — (byte 3)(byte 2)

Control is transferred to the instruction whose address is specified in
byte 3 and byte 2 of the current instruction.

Flags: none
JNC addr (No carry jump) 1101 0010 (D216)

IF (CY)=0
(PC) — (byte 3)(byte 2)

If the carry flag is not set, control is transferred to the instruction
whose address is specified in byte 3 and byte 2 of the current
instruction: otherwise, control continues sequentially.

Flags: none
JNZ addr (Not zero jump) 1100 0010 (C216)

IF (Z)=0
(PC) — (byte 3)(byte 2)

If the zero flag is not set, control is transferred to the instruction
whose address is specified in byte 3 and byte 2 of the current
instruction: otherwise, control continues sequentially.

Flags: none
JP addr (Plus jump) 1111 0010 (F216)

IF (S)=0
(PC) «— (byte 3)(byte 2)

If the sign flag is not set, control is transferred to the instruction
whose address is specified in byte 3 and byte 2 of the current
instruction: otherwise, control continues sequentially.

Flags: none

All mnemonics Copyright Intel Corporation 1989

A-16 The 8085 Instruction Set

JPE addr (Parity even jump) 1110 1010 (EA1s¢)

IF (P)=1
(PC) «— (byte 3)(byte 2)

If the parity flag is set, control is transferred to the instruction whose
address is specified in byte 3 and byte 2 of the current instruction:
otherwise, control continues sequentially.

Flags: none
JPO addr (Parity odd jump) 1110 0010 (E216)

IF (P)=0
(PC) «— (byte 3)(byte 2)

If the parity flag is not set, control is transferred to the instruction
whose address is specified in byte 3 and byte 2 of the current
instruction: otherwise, control continues sequentially.

Flags: none
JZ addr (Zero jump) 1100 1010 (CAz1e)

IF (Z)=1
(PC) «— (byte 3)(byte 2)

If the zero flag is set, control is transferred to the instruction whose
address is specified in byte 3 and byte 2 of the current instruction:
otherwise, control continues sequentially.

Flags: none
LDA addr (Load accumulator direct) 0011 1010 (3A16)

(A) — (byte 3)(byte 2)

The content of the memory location whose address is specified in byte
3 and byte 2 of the instruction is copied to register A.

Flags: none

All mnemonies Copyright Intel Corporation 1989

Alphabetical Listing of Opcodes and Pseudo Opcodes (Assembler Directives) A-17

LDAX rp (Load accumulator indirect) 000R 1010 (0A16 + R*16)

(A) «— ((rp))

The content of the memory location whose address is in the register
pair rp is copied to register A. NOTE: Only register pairs rp=B
(registers B and C) or rp=D (registers D and E) may be specified.

Flags: none
LHLD addr (Load H and L direct) 0010 1010 (2A18)

(L) — ((byte 3)(byte 2))
(H) « ((byte 3)(byte 2)) + 1

The content of the memory location whose address is specified in byte
3 and byte 2 of the instruction is copied to register L. The content of
the memory location at the succeeding address is copied to register H.

Flags: none
LXI rp,data 16 (Load register pair immediate) 00RR 0001 (0116 + RR*16)

(rh) — (byte 3)
(rD) — (byte 2)

Byte 3 of the instruction is copied into the high-order register (rh) of
the register pair rp. Byte 2 of the instruction is copied into the low-
order register (rh) of the register pair rp.

Flags: none

MOV M,r (Move to memory) 0111 Orrr (7016 + rrr)

((HXL)) — (1)

The contents of register r is moved (copied) to the memory location
whose address is in registers H and L.

Flags: none
MOV rM (Move from memory) Olrr r110 (4616 + rrr*8)
(r) «— ((HXL)

The contents of the memory location whose address is in registers H
and L is moved (copied) to register r.

Flags: none

All mnemonics Copyright Intel Corporation 1989

A-18 The 8085 Instruction Set

MOV rir2 (Move register) 00r1rl r1r2r2r2 (016 + rirlrl*8 +r2r2r2)

(rl) — (r2)
The contents of register r2 is moved (copied) to register rl.
Flags: none
MVI M,data (Move to memory immediate) 0011 0110 (3616 + rrr)

((HXL)) «— (byte 2)

The content of byte 2 of the instruction is moved (copied) to the
memory location whose address is in registers H and L.

Flags: none
MVIr,data (Move to register immediate) 00rr r110 (0616 + rrr*8)
(r) — (byte 2)
The content of byte 2 of the instruction is moved (copied) to register r.
Flags: none
NOP (No operation) 0000 0000 (0016)

No operation is performed. The registers and flags are unaffected.

Flags: none

ORAM (OR memory) 1011 0110 (B616)

(A) — (A) \/ ((HXL))

The contents of the memory location whose address is in registers H
and L is inclusive-OR’d with the content of the accumulator. The
result is placed in the accumulator. The CY and AC flags are
cleared.

Flags: Z,S,P,CY,AC
ORATr (OR register) 1011 Orrr (BO16 + rrr)

The contents of register r is inclusive-OR’d with the content of the
accumulator. The result is placed in the accumulator. The CY and
AC flags are cleared.

Flags: Z,S,P,CY,AC

All mnemonics Copyright Intel Corporation 1989

Alphabetical Listing of Opcodes and Pseudo Opcodes (Assembler Directives) A-19

ORG addr (Origin statement) Assembler Directive

The Origin statement (ORG) sets the initial value of the memory
location counter. When the assembler encounters the ORG statement,
the memory location counter is set to the address addr. All
subsequent object code generated by the assembler is placed in
sequential memory locations, starting at the address given by the
expression. It is legal to establish a new origin, either before or after
a previous origin.

ORI data (OR Immediate) 1111 0110 (F616)

(A) —(A) V (byte 2)

The contents of byte 2 of the instruction is inclusive-OR’d with the
content of the accumulator. The result is placed in the accumulator.
The CY and AC flags are cleared.

Flags: Z,S,P,CY,AC
OUT port (Output) 1101 0011 (D31¢)

(date) «— (A)

The content of register A is placed on the eight bit bidirectional data
bus for transmission to the specified port.

Flags: none
PCHL (Jump H and L indirect — move H and L to PC)1110 1001(E916)

(PCH) — (H)
(PCL) — (L)

The content of register H is copied to the high-order eight bits of
register PC. The content of register L is copied to the low-order eight
bits of register PC.

Flags: none

All mnemonics Copyright Intel Corporation 1989

A-20 The 8085 Instruction Set

POP (Pop) 11RR 0001 (C116 + RR*16)

Tl — (SP)
(th) — ((SP) + 1)
(SP) — (SP) + 2

The content of the memory location whose address is specified by the
content of register SP is copied to the low-order register of the
register pair (rp). The content of the memory location whose address
is one more than the content of register SP is copied to the high-order
register of register pair rp. The content of register SP is incremented
by two. NOTE: Register pair rp=SP may not be specified.

Flags: none
POP PSW (Pop processor status word) 1111 0001 (C116)

(CY) — ((SP)o
(P) — ((SP))2
(AC) — ((SP)4
(Z) — ((SP)s
(S) — ((SP))7
(A)—(SP)+1)
(SP) — (SP) + 2

The content of the memory location whose address is specified by the
content of register SP is used to restore the condition flags. The
content of the memory location whose address is one more than the
content of register SP is copied to register A. The content of register
SP is incremented by two.

Flags: Z,S,P,CY,AC

All mnemonics Copyright Intel Corporation 1989

Alphabetical Listing of Opcodes and Pseudo Opcodes (Assembler Directives) A-21

PUSH rp (Push) 11RR 0101 (C516 + RR*16)

((SP)-1) —(rh)
((SP) - 2) «—(zD)
(SP) — (SP) -2

The content of the high-order register of register pair rp is copied to
the memory location whose address is one less than the content of
register SP. The content of the low-order register of the register pair
(rp) is copied to the memory location whose address is two less than
the content of register SP. The content of register SP is decremented
by two. NOTE: Register pair rp=SP may not be specified.

Flags: none
PUSH PSW (Push processor status word) 1111 0101 (F516)

((SP)-1) —(A)
((SP) - 2)o — (CY)
((SP) -2)1 — (1)
((SP) - 2)z — (P)
((SP)-2)3 «—(0)
((SP) - 2)4 — (AC)
((SP) - 2)5 «— (0)
((SP) - 2)6 — (2)
((SP) - 2)7 —(8)
(SP) —(SP) -2

The content of register A is copied to the memory location whose
address is one less than register SP. The condition flags are copied
into the corresponding bits of the memory location whose address is
two less than the content of register SP. The content of register SP is
decremented by two.

Flags: none

All mnemonics Copyright Intel Corporation 1989

A-22 The 8085 Instruction Set

RAL (Rotate left through carry) 0001 0111 (1716)

(Ap+1) — (Aq)
(CY) — (A7)
(Ag) —(CY)

The content of the accumulator is rotated left one position through
the carry flag. The low-order bit is set equal to the carry flag, and the
carry flag is set equal to the value shifted out of the high-order bit
position. Only the CY flag is affected.

Flags: CY
RAR (Rotate right through carry) 0001 1111 (1F1e)
(Ap) — (An+1)
(CY) — (Ag)
(A7) — (CY)

The content of the accumulator is rotated right one position through
the carry flag. The high-order bit is set equal to the carry flag, and
the carry flag is set equal to the value shifted out of the low-order bit
position. Only the CY flag is affected.

Flags: CY
RC (Carry return) 1101 1000 (D816)

If(CY)=1
(PCL) — ((SP))
(PCH) —((SP) + 1)
(SP) — (SP) + 2

If the carry flag is set, the actions specified in the RET instruction
are performed: otherwise, control continues sequentially.

Flags: none

All mnemonics Copyright Intel Corporation 1989

Alphabetical Listing of Opcodes and Pseudo Opcodes (Assembler Directives) A-23

RET (Return) 11001001 (C9,y)
(PCL) «— ((SP))
(PCH) — ((SP) +1)
(SP) <— (SP) + 2
The content of the memory location whose address is specified in
register SP is copied to the low-order eight bits of register PC. The
content of the memory location whose address is one more than the
content of register SP is copied to the high-order eight bits of
register PC. The content of register SP is incremented by two.
Flags: none

RIM (Read interrupt mask) 0010 0000 (20,5)
(Ay) — (M5.5)
(A,) <— (MS6.5)
(A,) <— (M7.5)
(Ag) «——(IE)
(A,) «— (I5.5)
(A;) «— (I16.5)
(Ag) «— (17.5)
(A;) —(SID)
The interrupt status and serial input data are copied to the
accumulator. The interrupt mask bits 0,1, and 2 (M5.5, M6.5, and
MY7.5 respectively) are set to 1 when the respective interrupt is
masked. Bit 3, IE is set to 1 when the INTR interrupt is enabled.
Bits 4, 5, and 6 (I5.5, 16.5, and 17.5 respectively) are set to 1 when
the corresponding interrupt has occurred, but not been serviced.

Bit 7 receives the value from the serial input data (SID) line.

Flags: none

All mnemonics Copyright Intel Corporation 1989

A-24 The 8085 Instruction Set

RLC (Rotate left) : 0000 0111 (0716)

(An+1) —(An)
(Ao) — (A7)
(CY) — (A7)

The content of the accumulator is rotated left one position. The low-
order bit and the carry flag are both set to the value shifted out of the
high-order bit position. Only the CY flag is affected.

Flags: CY
RM (Minus return) 1111 1000 (F81s)

If (S)=1
(PCL) «— ((SP))
(PCH) — ((SP) + 1)
(SP) —(SP) + 2

If the sign flag is not set, the actions specified in the RET instruction
are performed: otherwise, control continues sequentially.

Flags: none
RNC (Not carry return) 1101 0000 (DO16)

If (CY)=0
(PCL) — ((SP))
(PCH) — ((SP) + 1)
(SP) —(SP) + 2

If the carry flag is not set, the actions specified in the RET
instruction are performed: otherwise, control continues sequentially.

Flags: none

All mnemonics Copyright Intel Corporation 1989

Alphabetical Listing of Opcodes and Pseudo Opcodes (Assembler Directives) A=-25

RNZ (Not zero return) 1100 0000 (C016)

If (Z)=0
(PCL) — ((SP))
(PCH) — ((SP) + 1)
(SP) — (SP) + 2

If the zero flag is not set, the actions specified in the RET instruction
are performed: otherwise, control continues sequentially.

Flags: none

RP (Plus return) 1111 0000 (F'016)

If (S)=0
(PCL) «— ((SP))
(PCH) «— ((SP) + 1)
(SP) — (SP) + 2

If the sign flag is set, the actions specified in the RET instruction are
performed: otherwise, control continues sequentially.

Flags: none
RPE (Parity even return) 1110 1000 (E816)
If (P)=1
(PCL) — ((SP))
(PCH) «— ((SP) + 1)
(SP) — (SP) + 2

If the parity flag is set, the actions specified in the RET instruction
are performed: otherwise, control continues sequentially.

Flags: none

All mnemonics Copyright Intel Corporation 1989

A-26 The 8085 Instruction Set

RPO (Parity odd return) 1110 0000 (EO16)

If (P)=0
(PCL) — ((SP))
(PCH) —((SP)+ 1)
(SP) — (SP) + 2

If the parity flag is set, the actions specified in the RET instruction
are performed: otherwise, control continues sequentially.

Flags: none
RRC (Rotate right) 0000 1111 (OF 16)

(An) — (An+1)
(A7) — (Ao)
(CY) — (Ag)

The content of the accumulator is rotated right one position. The
high- order bit and the carry flag are both set equal to the value
shifted out of the low-order bit position. Only the CY flag is
affected.

Flags: CY
RSTn (Restart) OONN N111 (0716 + NNN*8)

((SP)-1) — (PCH)
((SP)-2) — (PCL)
(SP) — (SP)-2
(PC) — 8 * NNN

The high-order eight bits of the next instruction address are moved to
the memory location whose address is one less than the content of
register SP. The low-order eight bits of the next instruction address
are moved to the memory location whose address is two less than the
content of register SP. The content of register SP is decremented by
two. Control is transferred to the instruction whose address is eight
times the value NNN.

Flags: none

All mnemonics Copyright Intel Corporation 1989

Alphabetical Listing of Opcodes and Pseudo Opcodes (Assembler Directives) A-27

RZ (Zero return) 1100 1000 (C816)

If (Z)=1
(PCL) — ((SP))
(PCH) «—((SP) + 1)
(SP) —(SP) + 2

If the zero flag is set, the actions specified in the RET instruction are
performed: otherwise, control continues sequentially.

Flags: none

SBBM (Subtract memory with borrow) 1001 1110 (9E186)

(A) —(A) - ((HXL) - (CY)

The content of the memory location whose address is contained in the
H and L registers and the content of the carry flag are both
subtracted from the content of the accumulator. The result is placed
in the accumulator.

Flags: Z,S,P,CY,AC
SBBr (Subtract register with borrow) 1001 1rrr (AE16 + rrr)

(A) —(A) - () - (CY)

The content of register r and the content of the carry flag are both
subtracted from the content of the accumulator. The result is placed
in the accumulator.

Flags: Z,S,P,CY,AC
SBI data (Subtract immediate with borrow) 1101 1110 (DE16)

(A) —(A) — (byte 2) - (CY)

The content of the second byte of the instruction and the content of
the carry flag are both subtracted from the content of the
accumulator. The result is placed in the accumulator.

Flags: Z,5,P,CY,AC

All mnemonics Copyright Intel Corporation 1989

A-28 The 8085 Instruction Set

SET (Set statement) Assembler Directive

The SET statement assigns an arbitrary value to a desired symbol.
The SET pseudo differs from the EQU pseudo in that any label
defined in a SET statement can be redefined in a following SET
statement as many times as desired in the course of the program.

SHLD addr (Store H and L direct) 0010 0010 (221¢)

((byte 3)(byte 2)) — (L)
((byte 3)(byte 2)) + 1 — (H)

The content of register L is copied to the memory location whose
address is specified in byte 8 and byte 2 of the instruction. The
content of register H is copied to the memory location at the

succeeding address.
Flags: none
SIM (Set interrupt mask) 0011 0000 (3016)

(M5.5) «— (Ao)

(M6.5) — (A1)

(M7.5) — (Az2)

(MSE) «— (A3)

(R7.5) — (Ay)

(SOE) «— (Ag)

(SOD) «— (A7)

The interrupt masks, 7.5 reset, and serial output data are copied
from the accumulator to their respective destinations. The interrupts
are masked by ones in bits 0, 1, and 2 (M5.5, M6.5, and M7.5
respectively). However, no action will be taken unless bit 3 (MSE) is
also a one. When Bit 4 is a one, RST 7.5 will be reset (even if it has
not been serviced). Serial output enable (SOE) must be set to one to
change the level on the serial output data (SOD) line. The new value
of SOD will be determined by bit 7.

Flags: none

All mnemonies Copyright Intel Corporation 1989

Alphabetical Listing of Opcodes and Pseudo Opcodes (Assembler Directives) A-29

SPACE (Listing control) Assembler Directive
The SPACE pseudo leaves blank lines in the program listing.

SPHL (Move HL to SP) 1111 1001 (F916)
(SP) — (H)(L)

The contents of registers H and L (16 bits) are copied to register SP.

Flags: none

STA addr (Store accumulator direct) 0011 0010 (3216)

(byte 3)(byte 2) — (A)

The content of register A is copied to the memory location whose
address is specified in byte 3 and byte 2 of the instruction.

Flags: none
STAX rp (Store accumulator indirect) 000R 0010 (0216 + R*16)

(A) — ((rp))

The content of register A is copied to the memory location whose
address is in the register pair rp. NOTE: Only register pairs rp=B
(registers B and C) or rp=D (registers D and E) may be specified.

Flags: none
STC (Set the carry) 0011 0111 (3718)
CY)—1
The CY flag is set to 1. No other flags are affected.
Flags: CY
STL ’subtitle’ (Listing control) Assembler Directive

The subtitle pseudo (STL) does not affect pagination. That is, it does
not generate a new page, but simply titles a subsection of the
program with the string corresponding to ’subtitle’. Subtitles are
frequently used to indicate subroutines or major program modules.

All mnemonics Copyright Intel Corporation 1989

A-30 The 8085 Instruction Set

SUBM (Subtract memory) 1001 0110 (96,,)

(A) «— (A) = ((H)XL))

The content of the memory location whose address is contained in
the H and L registers is subtracted from the content of the
accumulator. The result is placed in the accumulator.

Flags: Z,S,P,CY,AC

SUBr (Subtract register) 1001 Orrr (90

A)—(A) -

The content of register r is subtracted from the content of the
accumulator. The result is placed in the accumulator.

Flags: Z,S,P,CYAC

SUI data (Subtract immediate) 1101 0110 (D6

(A) «<— (A) — (byte 2)

The content of the second byte of the instruction is subtracted from
the content of the accumulator. The result is placed in the
accumulator.

Flags: Z,S,P,CY,AC

TITLE new title’ (Listing control) Assembler Directive

The title pseudo causes a new page to be used. Unless the
assembler is already at the top of a page, a new page of the
assembly listing is generated. This page is given the title contained

in the string ‘new title’.

XCHG (Exchange H and L with D and E) 11101011 (EB
(L) — (E)
(H) «— (D)

The content of register L is exchanged with the content of register
E. The content of register H is exchanged with the content of

register D.
Flags: none

All mnemonics Copyright Intel Corporation 1989

Alphabetical Listing of Opcodes and Pseudo Opcodes (Assembler Directives) A-31

XRAM (Exclusive OR memory) 1010 1110 (AE16)

(A) — (A) M (HXL))

The contents of the memory location whose address is in registers H
and L is exclusive-OR’'d with the content of the accumulator. The
result is placed in the accumulator. The CY and AC flags are
cleared.

Flags: Z,5,P,CY,AC
XRAr (Exclusive OR register) 1010 1rrr (A816 + rrr)

(A) — (A) M (1)

The contents of register r is exclusive-OR’d with the content of the
accumulator. The result is placed in the accumulator. The CY and
AC flags are cleared.

Flags: Z,S,P,CY,AC
XRI data (Exclusive OR immediate) 1110 1110 (EE1e)

(A) — (A) X (byte 2)

The contents of the second byte of the instruction is exclusive-OR’d
with the content of the accumulator. The result is placed in the
accumulator. The CY and AC flags are cleared.

Flags: Z,S,P,CY,AC
XTHL (Exchange stack top with HL to SP) 1110 0011 (E316)

(L) — ((SP))
(H) — ((SP)+ 1)

The content of the L register is exchanged with the content of the
memory location whose address is specified by the content of register
SP. The content of the H register is exchanged with the content of the
memory location whose address is one more than the content of
register SP.

Flags: none

All mnemonics Copyright Intel Corporation 1989

Appendix B

The 8085 Data Sheet

B-2 The 8085 Data Sheet

8085AH/8085AH-2/8085AH-1
8-BIT HMOS MICROPROCESSORS

= Single +5V Power Supply with 10% = On-Chip System Controller; Advanced
Volitage Margins Cycle Status Information Available for
= 3 MHz, 5 MHz and 6 MHz Selections Large System Control .
Available = Four Vectored Interrupt Inputs (One is
= 20% Lower Power Consumption than Non-Maskable) Plus an

8080A-Compatible Interrupt
8085A for 3 MHz and 5 MHz « Serial In/Serial Out Port

® 1.3 us Instruction Cycle (8085AH); 0.8 = Decimal, Binary and Double Precision
1S (8085AH-2); 0.67 us (8085AH-1) Arithmetic
= 100% Compatible with 8085A . girect Afdn:ressing Capability to 64K
es of Memo
= 100% Software Compatible with 8080A . A\):;ilabl e in EeryRESS
= On-Chip Clock Generator (with - Standard Temperature Range
External Crystal, LC or RC Network) - Extended Temperature Range

taster versions of the 8085AH.

The 8085AH incorporates -all of the features that the 8224 (clock generator) and 8228 (system controller)
provided for the 8080A, thereby offering a high level of system integration.

The BO85AH uses a multiplexed data bus. The address is split between the 8 bit address bus and the 8 bit data
bus. The on-chip address latches of 8155H/8156H/8355/8755A memory products allow a direct interface with

the 8085AH.
INTA RSTE.5 TAAP
INTR I RST S5] RST2S ! sio 500
4 : ! !
[]
U B8IT INTERNAL DATA BUS '
— x1 400 vee
]’f x2 gz 330 HoLD
RESETOUT 3 380 HLDA
soo g4 370 cLk ouT)
1 sID Os 36 3 RESET In
! TRAP 16 3150 ReaDY
| RsT75 7 ey 10/m
| n::: = | I RST65 [J8 30 5
INSTRUCTION RSTS55 9 kv] m] RD
""féé".'i"‘ "‘ﬁ:“ n:c . 1 J INTR [0 "31 0 wR
_l MACHINE o L:ﬁ-‘s;w INTA [118085AH B
‘ T " wodiz mbs
STACK POINTER ADY Q13 280 A
1 PAOGRAM COUNTER 1 AD2 e 2700 A
POWER [—= By AD3 15 260 ap
=5 Tt o soade =P an
i ADs [17 220 A
ADg] 18 230 Ay
= ADy Q19 220 Ag
TIMING AND CONTROL
vss [J20 210 ag
* i — I ADORESS BUFFER "'I Lmuamon:ssuun"'l
Xz GEn CONTROL STATUS Oma —_—
B i
LT ILIOL T LT I
CLx our BD WR ALE 55, 10/ HLDA RESET QU
- Ay A, AQ -
neaoy Lt RESEEW ADORESS Bus ADORESSDATA BUS
Figure 2. 8085AH Pin
Figure 1. 8085AH CPU Functional Block Diagram Configuration

Reprinted by permission of Intel Corporation, Copyright/Intel Corporation 1989

The 8085 Data Sheet B-3

Table 1. Pin Description

memory or I/O location. Data is set
up at the trailing edge of WR. 3-
stated during Hold and Halt modes
and during RESET.

Symbol Type Name and Function Symbol Type Name and Function
Ag-Aqs o} Address Bus: The maost significant READY 1 Ready: If READY is high during a
8 bits of the memory address or the read or write cycle, it indicates that
8 bits of the VO address, 3-stated the memory or peripheral is ready to
during Hold and Halt modes and send or receive data. If READY is
during RESET. low, the cpu will wait an integral
ADp—7 o Multiplexed Address/Data Bus: numbeerf clock cycles for ﬁEADY
Lower 8 bits of the memory address to go hlgh'before completing the
{or /O address) appear on the bus read or write c_y_cle. READY must
during the first clock cycle (T state) conform to specified setup and hold
of a machine cycle. It then becomes times.
the data bus during the second and HOLD I Hold: Indicates that another master
third clock cycles. is requesting the use of the address
ALE 0 Address Latch Enable: It occurs and data buses. The cpu, upon
during the first clock state of a ma- receiving the hold request, will
chine cycle and enablesthe address relinquish the use gf the bus as
to get latched into the on-chip latch soon as the completion of the cur-
of peripherals. The falling edge of @t bus !rans_fer. Internal process-
ALE is set to guarantee setup and ing can continue. The processor
hold times for the address informa- can regain the bus only after the
tion. The falling edge of ALE can HOLD is removed. When the HOLD
also be used to strobe the status is acknowledged, the_:_Af!dress,
information. ALE is never 3-stated. Data RD, WR, and 10/M lines are
— 3-stated.
So.$1.and 10M 0 Maclline Cyle Stutus: HLDA o} Hold Acknowledge: Indicates that
IO/M S; So Status the cpu has received the HOLD re-
0 0 1 Memory write quest and that it will relinquish the
0 1 0 Memory read bus in the next clock cycle. HLDA
1 0 1 VO write goes low after the Hold request is
1 1 0 VO read removed. The cpu takes the bus one
0 11 Opcode fetch half clock cycle after HLDA goes
1 1 1 Opcode fetch low.
1 1 1 Interrupt
Acknowledge INTR | Interrupt Hequest_: Is used as a
. 0 0 Halt general purpose interrupt. It is
. X X Hold sampled only during the next to the
. X X Reset last ;:Iock i'yc‘l;e of an instruclilcf)n
. R and during Hold and Halt states. If it
x—:tzt:;zé::gg inpecancs) is active, the Program Counter (PC)
will be inhibited from incrementing
S, can be used as an advanced R/W and an INTA will be issued. During
status. I0/M. S and S, become this cycle a RESTART or CALL in-
valid at the beginning of a machine strughon canbe m_serted lq jump to
cycle and remain stable throughout the mlterrupt service ro‘uilne. The
the cycle. The falling edge of ALE INTR is engblgd and disabled by
may be used to latch the state of _sonwal_'e. It nsdlsableq by Reset and
these fines. immediately after an interrupt is ac-
= — cepted.
RD (o] Read Control: A low level on RD —— -
indicates the selected memory or INTA (o] Interrupt Acknowledge: Isus.edvln-
I/O device is to be read and that the stead of (and has the same timing
Data Bus is available for the data as) RD during the Instruction cycle
transfer, 3-stated during Hold and after an 'NTR is accepted. It can be
Halt modes and during RESET. usgd 1o activate an §259A Interrupt
— — chip or some other interrupt port.
WR (o] Write Control: A low level on WR -
indicates the data on the Data Bus is RST 5.5 I Restart Interrupts: These three in-
to be written into the selected RST 6.5 puts have the same timing as INTR
RST 7.5 except they cause an internal

RESTART to be automatically
inserted.

The priority of these interrupts is
ordered as shown in Table 2. These
interrupts have a higher priority
than INTR. In addition, they may be
individually masked out using the
SIM instruction.

Reprinted by permission of Intel Corporation,

Copyright/Intel Corporation 1989

B-4 The 8085 Data Sheet

Table 1. Pin Description (Continued)

Symbol Type Name and Function Symbol , Type Name and Function
TRAP 1 Trap: Trap interrupt is a non- RESET OUT o} ResetOut: ResetOutindicates cpu
maskable RESTART interrupt. It is is being reset. Can be used
recognized at the same time as as a system reset. The signal is
INTR or RST 5.5-7.5. It is unaffected synchronized to the processor
by any mask or Interrupt Enable. It clock and lasts an integral number
has the highest priority of any inter- L of clock periods.
fupt. (See Table 2,) Xq. Xz | X, and Xz: Are connected to a
RE IN | Reset In: Sets the Program crystal, LC, or RC network to drive
Counter to zero and resets the Inter- the internal clock generator. Xy can
rupt Enable and HLDA flip-flops. also be an external clock input trom
The data and address buses and the a logic gate. The input frequency is
control lines are 3-stated during divided by 2 to give the processor's
RESET and because of the asyn- internal operating frequency.
ey et PESET. bl CLK O [Clock: Clock output for use as a sys-
cessor's internal registers a d flag tem clock. The period of CLK is
may be altered by RESET with un- twice the X;. X, input period
predictable results. RESET N is a . else :
Schmitt-triggered input, atlowing SID I Serial input Data Line: The data on
connection to an R-C network for this line is loaded into accumulator
power-on RESET delay (see Figure bit 7 whenever a RIM instruction is
3). Upon power-up, RESET IN must executed.
remain low for at least 10 ms after SOD o} Serial Output Data Line: The out-
minimum Vcc has been reached. put SOD is set or reset as specified
For proper reset operation after the by the SIM instruction.
power-up duration, RESET IN v P g
should be kept low a minimum of ce ower: +5 volt supply.
three clock periods. The CPU is held Vss Ground: Reference.
in the reset condition as long as |_
RESET IN is applied.
Table 2. Interrupt Priority, Restart Address, and Sensitivity
Address Branched To (1) 7
Name Priority When Interrupt Occurs Type Trigger

TRAP 1 24H Rising edge AND high level until sampled.

RST 75 2 3CH Rising edge (latched.

RST 6.5 3 34H High level until sampled.

RST 5.5 4 2CH High level until sampled.

INTR 5 See Note 12). High level until sampied.

NOTES:

1. The processor pushes the PC on the stack before branching to the indicated address,

2. The address branched to depends on the instruction provided to the cpu when the interrupt is acknowledged.

Vec O

TYPICAL POWER-ON RESET RC VALUES®

Ry = 75K
Ci=14F
“VALUES MAY HAVE TO VARY DUE TO

APPLIED POWER SUPPLY RAMP UP TIME.

Reprinted by permission of Intel Corporation,

Figure 3. Power-On Reset Circuit

Copyright/Intel Corporation 1989

The 8085 Data Sheet B-5

FUNCTIONAL DESCRIPTION

The 8085AH is a complete 8-bit parallel central pro-
cessor. It is designed with N-channel, depletion
load, silicon gate technology (HMOS), and requires
a single +5 volt supply. Its basic clock speed is
3 MHz (B085AH), 5 MHz (8085AH-2), or 6 MHz
(BO85AH-1), thus improving on the present 8080A’s
performance with higher system speed. Also it is
designed to fit into a minimum system of three IC’s:
The CPU (8085AH), a RAM/IO (8156H), and a ROM or
EPROM/IO chip (8355 or 8755A).

The 8085AH has twelve addressable 8-bit registers.
Four of them can function only as two 16-bit register
pairs. Six others can be used interchangeably as
8-bit registers or as 16-bit register pairs. The 8085AH
register set is as follows:

Mnemonic Register Contents
ACCorA Accumulator 8 bits
PC Program Counter 16-bit address
BC,DE,HL Generai-Purpose 8 bits x 6 or
Registers; data 16 bits x 3
pointer (HL)
SP Stack Pointer 16-bit address
Flags or F Flag Register 5 flags (B-bit space)

The 8085AH uses a multiplexed Data Bus. The
address is split between the higher 8-bit Address
Bus and the lower 8-bit Address/Data Bus. During
the first T state (clock cycie) of a machine cycle the
low order address is sent out on the Address/Data
bus. These lower 8 bits may be latched externally by
the Address Latch Enable signal (ALE). During the
rest of the machine cycle the data bus is used for
memory or |/O data.

The 8085AH provides RD, WR, Sg, Sq, and IO/M
signals for bus control. An Interrupt Acknowledge
signal (INTA) is also provided. HOLD and all Inter-
rupts are synchronized with the processor’s internal
clock. The B0BSAH also provides Serial input Data
(SID) and Serial Output Data (SOD) lines for simple
serial interface.

In addition to these features, the 8085AH has three
maskable, vector interrupt pins, one nonmaskable
TRAP interrupt, and a bus vectored interrupt, INTR.

INTERRUPT AND SERIAL 1/0

The 8085AH has 5 interrupt inputs: INTR, RST 5.5,
RST 6.5, RST 7.5, and TRAP. INTR is identical in
function to the 80B0OA INT. Each of the three RE-
START inputs, 5.5, 6.5, and 7.5, has aprogrammable
mask. TRAP is also a RESTART interrupt but it is
nonmaskable.

Reprinted by permission of Intel Corporation,

The three maskable interrupts cause the internal
execution of RESTART (saving the program counter
in the stack and branching to the RESTART address)
if the interrupts are enabled and if the interrupt mask
is not set. The nonmaskable TRAP causes the inter-
nal execution of a RESTART vector independent
of the state of the interrupt enable or masks. (See
Tabie 2.)

There are two different types of inputs in the restart
interrupts. RST 5.5 and RST 6.5 are high level-
sensitive like INTR (and INT on the 8080) and are
recognized with the same timing as INTR. RST 7.5 is
rising edge-sensitive.

For RST 7.5, only a pulse is required to set an inter--
nal flip-flop which generates the internai interrupt
request (@ normally high level signal with a low
going pulse is recommended for highest system
noise immunity). The RST 7.5 request flip-flop
remains set until the request is serviced. Then
it is reset automatically. This flip-flop may also be
reset by using the SIM instruction or by issuing a
RESET IN to the 8085AH. The RST 7.5 internal flip-
flop will be set by a pulse on the RST 7.5 pin even
when the RST 7.5 interrupt is masked out.

The status of the three RST interrupt masks can only
be affected by the SIM instruction and RESET IN.
(See SIM, Chapter 5 of the MCS-80/85 User's
Manual.)

The interrupts are arranged in a fixed priority that
determines which interrupt is to be recognized if
more than one is pending as follows: TRAP—
highest priority, RST 7.5, RST 6.5, RST 5.5, INTR—
lowest priority. This priority scheme does not take
into account the priority of a routine that was started
by a higher priority interrupt. RST 5.5 can interrupt
an RST 7.5 routine if the interrupts are re-enabled
before the end of the RST 7.5 routine.

The TRAP interrupt is useful for catastrophic events
such as power failure or bus error. The TRAP inputis
recognized just as any other interrupt but has the
highest priority. It is not affected by any flag or mask.
The TRAP input is both edge and level sensitive. The
TRAP input must go high and remain high until it is
acknowledged. It will not be recognized again until it
goes low, then high again. This avoids any false
triggering due to noise or logic glitches. Figure 4
illustrates the TRAP interrupt request circuitry
within the 80B5AH. Note that the servicing of any
interrupt (TRAP, RST 7.5, RST 6.5, RST 5.5, INTR)
disables all future interrupts (except TRAPs) until an
El instruction is executed.

Copyright/Intel Corporation 1989

EXTERNAL
TRAP

INTERRUPT
REQUEST TRAP

RESET IN SCHMITT
TRIGGER

RESET TRAP

‘ INTERRUPT
wsv—p CLK _’ REQUEST

]

D

|
, £/F
!

CLEAR

|
INTERNAL TRaP F.F
TRAP
ACKNOWLEDGE

Figure 4. TRAP and RESET IN Circuit

The TRAP interrupt is special in that it disables inter-
rupts, but preserves the previous interrupt enable
status. Performing the first RIM instruction follow-
ing a TRAP interrupt allows you to determine
whether interrupts were enabled or disabled prior to
the TRAP. All subsequent RIM instructions provide
current interrupt enable status. Performing a RIM
instruction following INTR, or RST 5.5-7.5 will
provide current Interrupt Enable status, revealing
that Interrupts are disabled. See the description of
the RIM instruction in the MCS-80/85 Family User's
Manual.

The serial I/0 system is also controlled by the RIM
and SIM instructions. SID is read by RIM, and SIM
sets the SOD data.

DRIVING THE X, AND X, INPUTS

You may drive the clock inputs of the B085AH,
8085AH-2, or BOB5AH-1 with a crystal, an LC tuned
circuit, an RC network, or an external clock source.
The crystal frequency must be at least 1 MHz, and
must be twice the desired internal clock frequency;
hence, the 8085AH is operated with a 6 MHz crystal
(for 3 MHz clock), the B085AH-2 operated with a 10
MHz crystal (for 5 MHz clock), and the 8085AH-1 can
be operated with a 12 MHz crystal (for 6 MHz clock).
If a crystal is used, it must have the following
characteristics:

Reprinted by permission of Intel Corporation,

A T TN

Parallel resonance at twice the clock frequency
desired

C, (load capacitance) < 30 pF

Cg (shunt capacitance) < 7 pF

Rs (equivalent shunt resistance) < 75 Ohms
Drive level: 10 mW

Frequency tolerance: =.005% (suggested)

Note the use of the 20 pF capacitor between X, and
ground. This capacitor is required with crystal fre-
quencies below 4 MHz to assure oscillator startup at
the correct frequency. A parallel-resonant LC circuit
may be used as the frequency-determining network
for the 8085AH, providing that its frequency
tolerance of approximately =10% is acceptable. The
components are chosen from the formula:

f= L

27V L(Cext + Cint)

To minimize variations in frequency, it is recom-
mended that you choose a value for Cgyy that is at
least twice that of Cjn¢, or 30 pF. The use of an LC
circuit is not recommended for frequencies higher
than approximately 5 MHz.

An RC circuit may be used as the frequency-
determining network for the 8085AH if maintaining a
precise clock frequency is of no importance. Var-
iations in the on-chip timing generation can cause a
wide variation in frequency when using the RC
mode. Its advantage is its low component cost. The
driving frequency generated by the circuit shown is
approximately 3 MHz. It is not recommended that
frequencies greatly higher or lower than this be
attempted.

Figure 5 shows the recommended clock driver cir-
cuits. Note in D and E that puliup resistors are re-
quired to assure that the high level voltage of the
input is at least 4V and maximum low level voltage
of 0.8V.

For driving frequencies up to and including 6 MHz
you may supply the driving signal to X4 and leave X,
open-circuited (Figure 5D). If the driving frequency
is from 6 MHz to 12 MHz, stability of the clock
generator will be improved by driving both X; and X;
with a push-pull source (Figure 5E). To prevent
self-oscillation of the BOB5AH, be sure that X, is not
coupled back to X, through the driving circuit.

Copyright/Intel Corporation 1989

The 8085 Data Sheet B-7

SOBEAM
__C.'i’.___...}
1
! Cint
@ % =~ 15 pF
“[_..]
. E‘;"“______...éitu.__f

20 pF CAPACITORS REQUIRED FOR

CRYSTAL FREQUENCY = 4 MHz ONLY.
a. Quartz Crystal Clock Driver

X 085AM
__[‘:._ ———
|
| CinT
Lext T Cexr # Blatad
S U
b. LC Tuned Circuit Clock Driver
BOBSAH
[——‘“—————{: A1
1
aoprEE -6
| :
= —{in

¢. RC Circuit Clock Driver

+8Y
LOW TIME > 80 ns
4700
TO
wo
—t { X,

l_..._..x,‘,

*Xz LEFT FLOATING

d. 1-6 MHz Input Frequency External Clock
Driver Circuit

+5V
LOW TIME > 40 na

'\‘%m/_’

X,

+5¢

Xz

e. 1-12 MHz Input Frequency External Clock
Driver Circuit

J
Figure 5. Clock Driver Circuits

-

GENERATING AN 8085AH WAIT STATE I
CLEAR BOREAMH
ALE-—={CLK CLK OUTPUT* —={CLK hiod

If your system requirements are such that slow e 0 READY
memories or peripheral devices are being used, the iz a FF g | euT
circuit shown in Figure 6 may be used to insert one o °

WAIT state in each 8085AH machine cycle.

The D flip-flops should be chosen so that
e CLK is rising edge-triggered
s CLEAR is low-level active.

Reprinted by permission of Intel Corporation,

"ALE AND CLK (OUT) SHOULD BE BUFFERED IF CLK INPUT OF LATCH
EXCEEDS 8085AH IOL OR 10H.

Figure 6. Generation of a Wait State for 8085AH
CPU

Copyright/Intel Corporation 1989

B-8 The 8085 Data Sheet

VO

ALE

RD

WR

-4 4

Ve Vg

10/M

Vee

CLK

RESET ou1 |
+

READY

NG

RESET

I
]
1
I
I
b

TIMER
N

1074

I

i
T
|

10y

|
T T
|
|

VW—sVee

]
AB- AD!
410 07, ¢

M

I
lALE h'ﬁllﬂ?v{cujwsr:nuv

TIMER
our

8156M
{RAM + /O + COUNTER/TIMER)

8355 [ROM + 10)
OR

8755A [PROM + 1/O)

"NOTE. OPTIONAL CONNECTION @ 181}

g3

Figure 8. MCS-85® Minimum System (Memory Mapped 1/0)

Aok 77

RESET IN
—={ TRAP HOLD|=—
—={RAST? HLDA fome
—={RS5T6 500 free
~—|RSTS B0BSAH SI0 |a—
—=INTR B
=3 RESET
o ADDA/ out [
ADDR DATA ALE FD WR I0/M RDY CLK
18 (8))
O/M (CS)
WR
Eog
\ DATA
STANDARD
\ MEMORY
} ADDR (CS|
kY
(413
p—=1 CLK
RESET
10/M 1CS) 10 PORTS
NTRO
wn COi LS
RD
i
DATA
STANDARD
A" LN L)
' ADDR
\./l‘ I\/
] A= v
AAA— Ve
——ANA— v

Figure 9. MCS-85® System (Using Standard Memories)

Reprinted by permission of Intel Corporation, Copyright/Intel Corporation 1989

The 8085 Data Sheet B-9

As in the B0B0, the READY line is used to extend the
read and write pulse lengths so that the 8085AH can
be used with slow memory. HOLD causes the CPU to
relinquish the bus when it is through with it by float-
ing the Address and Data Buses.

SYSTEM INTERFACE

The 8085AH family includes memory components,
which are directly compatible to the 8085AH CPU.
For example, a system consisting of the three chips,
BOB5AH, 8156H, and 8355 will have the following
features:

2K Bytes ROM

256 Bytes RAM

1 Timer/Counter

4 8-bit I/O Ports

1 6-bit I/O Port

® 4 |nterrupt Levels

e Serial In/Serial Qut Ports

This minimum system, using the standard I/O tech-
nique is as shown in Figure 7.

In addition to standard /O, the memory mapped I/0
offers an efficient I/O addressing technique. With
this technique, an area of memory address space is
assigned for I/O address, thereby, using the memory
address for I/O manipuiation. Figure 8 shows the
system configuration of Memory Mapped 1/0 using
8085AH.

The 8085AH CPU can also interface with the stan-
dard memory that does not have the muitiplexed
address/data bus. It will require a simple 8212 (8-bit
latch) as shown in Figure 9.

Reprinted by permission of Intel Corporation,

d05 Ty

TRAP
RST2S
RSTE.S
RSTSS
INTR
WTA
ADDR

[RREN!

r————
X, X, RESET IN
H

RESET
ADDR/ ouT

I0LD
HLDA
SO0
$10
5
S

DATA ALE AD WR IO/ RDY CLX

Vee

*NOTE. OPT/ONAL CONNECTION

ﬁ/\\ Vss VI:
8) 18
] PORT
: I
o PORT
| O g1seH 8
ALE
PORT
< [NJoara: c n
ADDR
IN
10/ TIMER |
r OuTp—
AD
ALE PORT
= .
z...—. Ay 1o
83655/
B8755A
DATA!
ADDR
| ~
| OR popt
T -]
S Ve
p—=fCLK oA --J
Vss Vee V?un PROG
AN Ve
.'A'Av
.V"Av

Figure 7. 8085AH Minimum System (Standard 1/O

Technique)

Copyright/Intel Corporation 1989

B-10 The 8085 Data Sheet

BASIC SYSTEM TIMING Table 3. 8085AH Machine Cycle Chart
The B085AH has a multiplexed Data Bus. ALE is used MACHINE CYCLE -s;;:ifu; s0 i—gn%?'ﬁ
as a strobe to sample the lower 8-bits of address on OPCODE FETCH (OF) of 1] 1o 1| 1
the Data Bus. Figure 10 shows an instruction fetch, MEMORY READ (MR) < R L (RC AU
;i MEMORY WRITE (Mw) ol o] 1)1 o 1
memory read and 1/O write cycle (as would occur 1/0 READ (10R) 1 11lelol 1] 1
during processing of the OUT instruction). Note that 1/0 WRITE tlow) Tloef o]
during the I/O write and read cycle that the I/O port e : B I I
address is copied on both the upper and lower haif BUS IDLE (B1): DAD o | 1 (O IR
.QF
Of the addfess ;‘S::_TRAP 1 1 1 1 3 1
HALT TS 0o O|7TS| TS 1
There are seven possible types of machine cycles.
Which of these seven takes place is defined by the Table 4. 8085AH Machine State Chart
status of the three status lines (I0/M, S+, Sq) and the
three control signals (RD, WR, and INTA). (See Table acn Status & Buses °°'“'°'I
. ne
3.) The status lines can be used as advanped con- State _|51.50 10/ |Ag-A 15 |ADo-AD, |75, 7R INTA|ALE
trols (for device selection, for example), since they T N % = ; TR
become active at the T, state, at the outset of each T |l . m | om | ’ r
machine cycle. Control lines RD and WR become TR X x | x| o
active later, at the time when the transfer of data isto Ts R . o " x| o |
take place, so are used as command lines. . |1 fe] x = h B ; o |
. : Ts 1 o] X TS 1 10
A machine cycle normally consists of three T states, Te 3 o il = TS 1 110
with the exception of OPCODE FETCH, which nor- = x lts! s — = ol &
s . RESET H
mally has either four or six T states (unless WAIT or Tuaer | 0 |15 78 | 718 s 1l o |
HOLD states are forced by the receipt of READY or e et A e
X HOLD | | 1
HOLD inputs). Any T state must be one of ten
possibie states, shown in Table 4. 0 = Logie “0” TS = High Impedance
1 = Logic “1* X = Unspecitied

* ALE not generated during 2nd and 3rd machine cycies of DAD instruction,
1 10/M = 1 during T4-Tg of INA machine cycle.

M, M, ",
CLK T A T i T T T \ T ! T, Ty \ i3 /
Ag-Byg PC,, (HIGH ORDER ADDRESS) PC+ 1), 10 PORT
——
(LOW ORDER DATA FROM DATA FROM MEMORY DATA TO MEMORY
ADDRESS) MEMORY (1/0 PORT ADDRESS) OR PERIPHERAL

= .,
— / L

STaTus $4Sg (FETCH) 10 IREAD) 01 WRITE n

Figure 10. 8085AH Basic System Timing

Reprinted by permission of Intel Corporation, Copyright/Intel Corporation 1989

The 8085 Data Sheet B-11

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias 0°C to 70°C
Storage Temperature —65°C to +150°C
Voltage on Any Pin

With Respect to Ground —-0.5V to +7V
Power Dissipation 1.5 Watt

D.C. CHARACTERISTICS
B0BSAH, 8085AH-2: (Tp = 0°C to 70°C, Ve = 5V =10%, Vg

"NOTICE: Stresses above those listed under “Absolute
Maximum Ratings"” may cause permanent darnage to the
device. This is a stress rating only and functional opera-
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi-
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

=0V; unless otherwise specified)”

BOB5AH-1: (T = 0°C to 70°C, Vge = 5V =5%, Vss = 0V; unless otherwise specified)

Symbol] Parameter Min. Max. Units Test Conditions
ViL : Input Low Voltage -0.5 +0.8 Vv
ViH [‘ Input High Voltage 20 Ve +0.5 v
VoL | Output Low Voltage 0.45 \ loL = 2mA
VoH | Output High Voltage 24 v loH = ~400uA
135 mA 8085AH, B0O85AH-2
lec Power Supply Current 200 mA 8085AH-1 (Preliminary)
e Input Leakage =10 nA 0=ViN=Vee
ILo Output Leakage =10 nA 0.45V < Voyt < Vg
ViLr Input Low Level, RESET -0.5 +0.8 v
VIHR Input High Level, RESET 24 Vee +0.5 v
Vhy J Hysteresis, RESET 0.25 v
A.C. CHARACTERISTICS
B085AH, 8085AH-2: (Tp = 0°C to 70°C, Vg = 5V =10%, Vgg = OV)*

8085AH-1: (Tp = 0°C to 70°C, Vg = 5V =5%, Vs = OV)

8085AH'? | 8085AH-212) | g085AH-1
Symbol Parameter (Finai) (Final) (Preliminary) Units

Min. | Max. | Min. | Max. | Min. | Max.
tcye CLK Cycle Period 320 | 2000 200 | 2000 167 | 2000 ns
ty CLK Low Time (Standard CLK Loading) 80 40 20 ns
2 CLK High Time (Standard CLK Loading) 120 70 50 ns
tr, tf CLK Rise and Fall Time 30 30 30 ns
IXKR X4 Rising to CLK Rising 25 120 25 100 20 100 ns
tXKF X4 Rising to CLK Falling 30 150 30 110 25 110 ns
tac Ag_15 Valid to Leading Edge of Control ' | 270 115 70 ns
tacL Ag.7 Valid to Leading Edge of Control 240 115 60 ns
tap Ag.15 Valid to Valid Data In 575 350 225 ns
AR .%%s(s%:}at After Leading Edge of 0 0 0 -

[ta Ag_15 Valid Before Trailing Edge of ALE [V | 115 50 25 ns

“Note: For Extended Temperature EXPRESS use MBOSSAH Electricals Parameters.

Reprinted by permission of Intel Corporation,

Copyright/Intel Corporation 1989

B-12 The 8085 Data Sheet

A.C. CHARACTERISTICS (Continued)

8085AH?! | 8085AH-2'2) | g085AH-1
i 1 imi .
Symbol Parameter (Final) (Final) (Preliminary) Units
Min. | Max. | Min. | Max. | Min. | Max.
taLL Ag-7 Valid Before Trailing Edge of ALE 90 50 25 ns
tARY READY Valid from Address Valid 220 100 40 ns
tca Address (Ag.15) Valid After Control 120 60 30 ns
Width of Control Low (RD, WR, iNTA)
4
tec Edge of ALE 00 230 150 ns
o l‘:z:r\Eg Edge of Control to Leading Edge 50 25 0 e
tow Data Valid to Trailing Edge of WRITE 420 230 140 ns
tHABE HLDA to Bus Enable 210 150 150 ns
tHABF Bus Float After HLDA 210 150 150 ns
tHACK HLDA Valid to Trailing Edge of CLK 110 40 0 ns
tHOH HOLD Hold Time 0 0 0 ns
tHDs HOLD Setup Time to Trailing Edge of CLK 170 120 120 ns
tNH INTR Hold Time 0 0 0 ns
INTR, RST, and TRAP Setup Time to
tins Falling Edge of CLK = =R L e
LA Address Hold Time After ALE 100 50 20 ns
Trailing Edge of ALE to Leading Edge
tLe of Controf 130 60 25 ns
tLek ALE Low During CLK High 100 50 15 ns
tLor ALE to Valid Data During Read 460 270 175 ns
tL pw ALE to Valid Data During Write 200 120 110 ns
L ALE Width 140 80 50 ns
tLRY ALE to READY Stable 110 30 10 ns
Trailing Edge of READ to Re-Enabling
tRAE of Address 150 b 2 =
tRD READ (or INTA) to Valid Data 300 150 75 ns
Control Trailing Edge to Leading Edge
RV of Next Control o A L ns
tROH Data Hold Time After READ INTA 0 0 0 ns
tRYH READY Hold Time 0 0 5 ns
READY Setup Time to Leading Edge
tRys of CLK 110 100 100 ns
twp Data Valid After Trailing Edge of WRITE 100 60 30 ns
twpL LEADING Edge of WRITE to Data Valid 40 20 30 ns

Reprinted by permission of Intel Corporation, Copyright/Intel Corporation 1989

The 8085 Data Sheet B-13

NOTES:

1. Ag-Aqs address Specs apply IO/M, Sg, and S, except Ag-A,5

3. For all output timing where C, ¥ 150 pF use the following

are undefined during T;~Tg of OF cycle whereas I0/M, Sp, and

S, are stable.

2. Test Conditions: tcyc = 320 ns (8085AH)/200 ns (8085AH-2);/

167 ns (8085AH-1); C = 150 pF.

A.C. TESTING INPUT, OUTPUT WAVEFORM

correction factors:
25 pF < C < 150 pF: -0.10 ns/pF
150 pF < C| = 300 pF: +0.30 ns/pF
4. Output timings are measured with purely capacitive load.

5. To calculate timing specifications at other values of toyc use

Table 5.

A.C. TESTING LOAD CIRCUIT

INPUT/OUTPUT
24 20 2.0
y] DEVICE
UNDER
3 ‘><M > TEST POINTS < “><; TEST —'LICL —
A B L At A 926, R0 o e '
C INCLUDES JIG CAPACITANCE
Table 5. Bus Timing Specification as a Tcyc Dependent

Symbol 8085AH B085AH-2 8085AH-1
taL (1/2) T - 45 (112)T - 50 (1/2) T - 58 Minimum
tLa (1/2) T - 60 (112) T - 50 (1/2)T - 63 Minimum
e (172) T - 20 (1/2) T - 20 (1/2) T - 33 Minimum
tLck (1/2) T - 60 (1/2) T - 50 (1/2)T - 68 Minimum
tLe (1/2) T - 30 (112) T - 40 (1/2)T - 58 Minimum
tap (52 + N)T — 225 (52 +N)T - 150 (522 +N)T - 192 Maximum
tRD (32 + N)T — 180 (3/2+N)T - 150 (32+N)T -175 Maximum
tRAE (112)T - 10 (1/2)T - 10 (1/2) T - 33 Minimum
tca (12) T — 40 (1/2) T - 40 (1/2) T - 53 Minimum
tow B2+N)T - 60 (82+N)T-70 (32 +N)T - 110 Minimum
twp (112) T - 60 (12T - 40 (112) T - 53 Minimum
tce (32 + N)T - 80 (32+N)T-70 (3/2 + N)T — 100 Minimum
tcL (1/2) T — 110 (12)T-75 (1/2)T - 83 Minimum
taRy (3/2) T - 260 (3/2) T - 200 (312 T - 210 Maximum
tHACK (1/2) T - S0 (1/2)T ~ 60 (1/2) T — 83 Minimum
tHABF (1/2) T + 50 (1/2) T + 50 (1/2) T + 67 Maximum
tHABE (1/2) T + 50 (1/2) T + 50 (112) T + 67 Maximum
tac (2/2) T - 50 (22) T - 85 (2/2) T - 97 Minimum
ty (1/2)T - 80 (1/2)T - 60 (1/2)T - 63 Minimum
to (172) T — 40 (1/2)T - 30 (1/2)T - 33 Minimum
try (3/2) T — 80 (3/2) T—- 80 (3/2) T - 90 Minimum
tLDR (412) T - 180 (42) T - 130 (412) T - 159 Maximum

NOTE: N is equal to the total WAIT states.

T =teye.

Reprinted by permission of Intel Corporation,

Copyright/Intel Corporation 1989

B-14 The 8085 Data Sheet

WAVEFORMS (Continued)

J READ OPERATION WITH WAIT CYCLE (TYPICAL) — SAME READY TIMING APPLIES
TO WRITE
1 T Toair T T

- ek el l—— lea —w

A

Ag Ay, g ADDRESS l | (
|
+

“I = — laag ".i
e H - : } tap- . | o - im
- N :
40, 80, x . ADDRESS ﬁ)—..@ i /////X'r onrnlmc
1| 1 '
by e - 1
i i TAFR = jm . - - - ig) - g
J ALE 1 Sond : "“oa - - - S
— _"L &
o o= Ty +ﬁ e]
RD'INTE \" E e = N j
LY -—
- = WAy = -
- = tar - |
- tary - fuvg t RAvs tavn

AtADY

NOTE 1 READY MUST REMAIN STABLE DURING SETUP AND HOLD TIMES

T

| a

INTERRUPT AND HOLD

s em e BUS FLOATING® o e]
/ ,
!
o P
I T
T —
LR A ‘
*Hase —{--—-i
i
e
=~ =

| | 1
T = |
P A d
— I—\
HLDA Z’ Ii
| i

5 -
ack o= e tyags “10/M IS ALSO FLOATING DURING THIS TIME

Reprinted by permission of Intel Corporation,

Copyright/Intel Corporation 1989

The 8085 Data Sheet B-15

Table 6. Instruction Set Summary

: instruction Code Operations instruction Code Operations
Mnemonic D; Dg Ds Dy D3 D; Dy Dg Description Mnemonic | D; Dg Ds Dy D3 D, D, Dy Description
MOVE, LOAD, AND STORE cz 1100 1 1 0 0 |Callonzero
MOVr1 12 0 1 DD D S S S |Moveregister to register CNZ T 100 0 1 0 0 Callonno zero
MOVMr | 0 1 1 1 0 S S S |Move register to memory cP 711 1.0 1 0 0 |Callon positive
MOV M 01 DD D 1 1 0 Movememory to register CM 11111 0 0 Callon minus
MVI 0 0 DD D 1 1 0|Move mmediate register CPE 71701 1 0 0 (Callon parity even
MVI M 00110 1 1 0 Moveimmediate memory CPO 1 1100 1 00 [Callonparityodd
X B 0000 0 0 0 1 |Loadimmediate register RETURN

PairB& C RET 11 00 1 0 0 1 |Retun
LXI D 0006 1 0 0 0 1 |Loadimmediate register RC 1101 10 0 0 Retun on carry
PairD&E | RNC 1 101 0 0 0 0 |Return on no carry
LXI H 00 100 0 0 1 |Loadimmediate register l Rz 1 100 1 0 0 0 [Return on zero
Pair H& L RNZ 1 1.0 0 0 0 0 0 |Return on no zero
STAX B 0000 0 O 1 0]StoreA indirect RP 1’11 100 0 0 Return on positive
STAX D 000 10 0 1 0]StoreA indirect RM 7T T 11 0 0 0 |Return on minus
LDAX B 00 00 1 0 1 0|LoadA indirect RPE 71 1010 0 0 |Return on parity even
LDAX D 00 0 1 1 0 1 0]LoadA indirect HEO 11 1000 0 0 |Return on parity odd
STA 0.0 1 1 0 0 1 0|StoreA direct RESTART
LDA 00 1 1 1 0 1 0]LoadAdirect RST 1 1 AAAT YT |Restart
SHLD 00100 0 1 0]|StoreH &L direct INPUT/QUTPUT
LHLD 0010 1 0 1 0|LoadHA&Ldirect 3] 11011011 input
XCHG 117 1 0 1 0 1 1 |ExchangeD&E H&L out 1. 1.0 1 0 0 1 1 |Output
Registers INCREMENT AND DECREMENT
STACK OPS| INRr 0 0 DDD 1 0 0 |increment register
PUSH B 1100 0 1 0 1|Push register Pair B & DCR ¢ 0 0 DDD 1 0 1 Decrement register
C on stack INR M 0 01 1 0 1 0 O |increment memory
PUSHD |1 1 0 1 0O 1 O 1 |Push register PairD & DCR M 0 01 1010 1 [Decrement memory
E on stack INX B 0 000 OO0 1 1 {incrementB&C
PUSH H 111 0 0 1 0 1 |Push register Pair H& registers
L on stack INX D 0 001 00 1 1 |lncrementD&E
PUSHPSW| 1 1 1 1 0 1 0 1 |PushA andFlags registers
on stack INX H 00 1 00 0 1 1 [ncrementH& L
PCP B 11 0 0 0 0 0 1 |Popregister PairB & registers
C off stack DCX B 0O 0.0 01 0 1 1 {DecrementB&C
POP D 19101 0 0 0 1 |Pop register Pair D& bex D 000 1101 1 |DecrementD&E
E off stack DCX H C 0 1 0 1 0 1 1 |DecrementH&L
POP H 11 1 0 0 0 0 1 |Popregister Pair H & ADD)
L off stack ADDr 1 0 0 0 0 S S S |Addregisterto A
POPPSW | 1 1 1 1 0 0 O 1 PopAandFiags ADCir 10400188 S jAddigisertoh
off stack with carry
XTHL 11100 0 1 1 |Exchangetopof ADD M O R O A d oY o
stack. H & L ADC M 1 000 1 1 1 0 |AddmemorytoA
SPHL 111 11 0 0 1 |H& Lo stack pointer CLCTE7
LXI SP 001 10 0 0 1 |Loadimmediate stack ADI 1 0 0 0 1 1 0 |Addimmediate to A
pointer ACI 1t 100 11 0 | Add immediate to A
INX SP 0 01 1 0 0 1 1 |Incrementstack pointer with carry
DCX SP 00 I N D e apa DAD B 0 00O 100 1|AddB&CtoHA&L
pointer DAD D 0 0 0 11 00 1 |AddD&EtoH&L
T DAD H 0 0 10100 1|AdH&ELIOHEL
JMP 110 0 0 0 1 1 |Jumpunconditional DAD sP 0 0 1.1 1 0 0 1 |Addstack pointer to
JC 11 0 1 1 0 1 0 |Jumpon carry H&L
JINC 1101 0 0 1 0 |Jumponnocarry SUBTRACT
3z 1100 1 0 1 0)Jumpon zero SuBr 1 0 0 1 0 S S S |Subtract register
INZ 1100 0 0 1 0 |Jumpon nozero from A
» 11110 0 1 ©Jumpocn positive S8Br 1 0 0 1 1 S S S |Subtract register from
JM 11 1 1 1 0 1 0 |Jumpon minus A with borrow
JPE 11 1 0 1 0 1 0 |Jump on parity even SUB M 1 0 0 1 0 1 1 D Subtract memory
JPO 11 1.0 0 0 1 0 |Jump on parity odd from A
PCHL 111 0 1 0 0 1|H&L toprogram SBB M 1 0 0 1 1 1 1 0 |Subtract memory from
counter A with borrow
CALL T sul 1 1 0 1 0 1 1 @© |[Subtract immediate
CALL 1100 1 0 1 |Call unconditional from A
cc 110 1 1 1 0 0 |Calloncarry S8l 1 1. 0 1 1 1 1 0 |Subtract immediate
CNC /11 0 1t 0 1 0 O |Calonnocarry from A with borrow
1

Reprinted by permission of Intel Corporation, Copyright/Intel Corporation 1989

B-16 The 8085 Data Sheet

Table 6. Instruction Set Summary (Continued)

r 3
! Instruction Code l Operations l Instruction Code Operations
1 Mnemonic | D; D D5 Dy D; D; D, Doj Description ; Mnemonic | D; Dg Dy Dy Dy D2 Dy Dy Description
LOGICAL ! | SPECIALS
ANA r 10 1 0 0 S S S |And register with 4 CMA Jo0 1 0 1 1 1 1!Complement
XRA r 101 0 1 S S S |Exclusive OR register [A
[i with A STC 0 0 1t 1 0 1 1 1/|Setcarry
ORA r 0 1 1 0 S S S |ORregister with A (CMC [0 0 1 1 1 1 1 1|Complement
CMP r 0t 1 1 8 5 5 |Compare register with A I carry
ANA M 101 00 1 1 0 |And memory with A DAA 10 0 1 0 9 1 1 1 !|pecimar adjust A
XRA M 101 0 1 1 1 0 |Exclusive OR memory ["CONTROL | 1
with A l El | T 117 1 1 0 1 1|Enableinterrupts
ORA M 10 1 0 1 1 0 |ORmemory with A DI M 1 1 10 0 1 1/|Disable Interrupt
CMP M 1.0 1 1 0 [Compare r NOP ;0000 O0 OO O | No-operation
memory with A { HLT 10 1 1 1 0 1 1 0|Han
ANJ 110 0 1 1 0 |Andimmediate with A l | NEW B0BSA INSTRUCTIONS]
XAl 1 1 0 1 1 1 0 |Exclusive OR immediate | ,I RIM {00 100 0 0 0Read Interrupt Mask
with A ! I siM € 0 1 1 00 0 0Setinterrupt Mask
ORI T 1 1 1 0 1 1 0 |ORimmediate with A |
CPI 1 1 1 1 1 1 0 |Compare immediate
with A I
ROTATE | 1
RLC 0 0 0 0 0 1 1 1 |RotateAleft
RRC 0 0 0 0 t 1 1 1|RotateA right
RAL 9 0 0 1 0 1 1 1 |RotateA left through
carry
RAR 0 0 0 1 1 1 1 1 |RotateA right through
carry
NOTES:

1. DDS or $SS: B 000. C 001, D 010, EO11. H 100. L 101. Memory 110, A 111,
2. Two possible cycle times (6/12) indicate instruction cycles dependent on condition flags.

"All mnemonics copyrighted @intel Corporation 1976.

Reprinted by permission of Intel Corporation, Copyright/Intel Corporation 1989

The 8085 Data Sheet B-17

WAVEFORMS

CLOCK

X1 INPUT

r lr | e e — 12 e el ey

o | A i p ; .8

ey —— |

e e e e e

READ i T | T i T3 ! T
—— ek — - ca =
Ag-Ayy] ' ADDRESS

- 'kap =
‘Hom - -

AD, AD)_X ADDRESS H ////AX DATA IN }—"C

fer e =il T

| 1 ' |: , , . .
ALEW. .':LF___.!LDR__ B i i e -ty Y———
i I .

! i
- Tay =1 j-— R
.
t

RD/NTA

WRITE J o !
CLK

= ek —]

gy X ADDRESS X

F |"' = lpw == -bl F"“" ‘ca "—-ll
' h - J

ADg-AD, * ADDRESS DATA OUT

!
“"— = [1 © o has —e (o lyp-—=
i

' PP |
wR | cc d |

i | = trg et] j— oL =

R R

— gy -

f— ta —=

HOLD .
T i T3 Thoro T woLo i T

I
I
|
d L
1T \ !
n
[4
! = tups '-|-')—‘noa]“mcg-—‘
|]) e i
HLDA X t ' \
= twapr
™ I :
BUS IADDRESS. CONTROLSI : s o

i
H
-

Reprinted by permission of Intel Corporation, Copyright/Intel Corporation 1989

Appendix C

PROGRAM CARTRIDGE
SOURCE CODE LISTINGS

C-2 PROGRAM CARTRIDGE SOURCE CODE LISTINGS

7000
7003
7006
7007
7009
700C
700D
700E
7011
7014
7017
7018
7019
701C
701E
7020
7021
7024
7025
7026
7028
702B
702C
702E
7031
7034

31
21
7E
FE
CA
ES
F3
CD
cD
CD
Fl
El
CD
DB
D3
23
11
1B
7B
FE
cz
TA
FE
c2
C3
38
4D
70
73

FF
34

00
03

49
46
ac

46
90
AQ

00

00
24

00
24
06
30
69
72
73

8F
70

70

00
00
00

00

10

70

70
70
38
63
6F
6F

35 20
72 6F
63 65
72 0D

File Digit 0

PUTC
SETRS232
SETLCD

DEC

MESSAGE

EQU
EQU
EQU

LXI SP,8FFFH

0046H
0049
004CH

;Establish a stack

LXI H,MESSAGE ;Point to message

MOV A,M

CPI 0

JZz BEGIN
PUSH H

PUSH PSW
CALL SETRS232
CALL PUTC
CALL SETLCD
POP PSW

POP H

CALL PUTC
IN 090H

QUT OAOH
INX H

LXI D,1000H
DCX D

MOV ALE

CPI O

JNZ DEC

MOV A,D

CPI 0O

JNZ DEC

JMP GET

All mnemonics copyright of Intel Corporation, 1989

;Get character
;Compare with 0
;Start over if zero
;Save H-L

;Save PSW

;Shift to RS232 mode
;Display Character
:Shift to LCD mode
;Restore PSW
;Restore H

;output character
iread data input port
;send byte to output port
;jpoint to next

;set up counter
;decrement counter
;COpYy count to a

;is high byte 07
;decrement again
;copy count to a

;is high byte 0?
;decrement again

;Do it all again

"8085 Microprocessor™, ODH

PROGRAM CARTRIDGE SOURCE CODE LISTINGS C-3

7048

705B

706E

707D

708B

7089

70AB

50
61
67
72
42
68
20
61
43
€9
31
48
20
61
42
6E
62
4D
67
34
oD

6F
6D
43
65
20
20
75
64
70
68
38
61
6F
79
6E
48
72
63
6E
30
00

67
69
6F
oD
4A
44
62
oD
79
74
39
74
6D
0D
74
61
0D
€8
20
32

72
6E
75

6F
2E
62

72
20
oD
68
70

6F
72

69
20
32

DB

DB

DB

DB

DB

DB

"Programming Course", ODH

"By John D. Hubbard",ODH

"Copyright 1989",0DH

"Heath Company"™,0DH

"Benton Harbor™,0DH

"Michigan 49022",0DH,0DH, 00H

END

All mnemonics copyright of Intel Corporation, 1989

C-4 PROGRAM CARTRIDGE SOURCE CODE LISTINGS

File Digit 1

GETC EQU 0043H

PUTC EQU 0046H
7000 CD 43 00 START1 CALL GETC:Get the key
7003 CD 46 00 CALL PUTC ;Display it
7006 C3 00 70 JMP START1 ;Do it again
7009 DS 17H

GETC EQU 0043H

PUTC EQU 0046H

STACK EQU 6FFFH
7020 31 FF 6F BEGIN1 LXI SP,STACK :Establish stack
7023 CD 43 00 CALL GETC ;Get the key
7026 47 MOV B,A ;Save value
7027 iF RAR ;8hift right one nibble
7028 1F RAR
7029 1F RAR
702A 1F RAR
702B E6 OF ANI OFH :;Mask nibble
702D CD 3E 70 CALL DOIT iDisplay nibble
7030 78 MOV A,B ;Restore byte
7031 E6é OF ANI OFH iMask nibble
7033 CD 3E 70 CALL DOIT iDisplay nibble
7036 3E 20 MVI A," ¥ ;set up a space
7038 CD 46 00 CALL PUTC ;Display it
703B C3 20 70 JMP BEGIN1 ;Do it again
703E FE 0A DOIT CPI OAH ;Compare it to 0A
7040 FA 45 70 JM OK ;Jump if OK
7043 cée 07 ADI O7H :Add 7 for letters
7045 Cé6 30 OK ADI 30H ;Add 30 for all
7047 CD 46 00 CALL PUTC ;Display it

7042 ce RET ;Return

All mnemonics copyright of Intel Corporation, 1989

PROGRAM CARTRIDGE SOURCE CODE LISTINGS C-5

704B DS OB5H
GETC EQU 0043H
PUTC EQU 0046H
PSTRING EQU COS5BH
STACK EQU 6FFFH

7100 31 FF 6F BEGIN LXI SP,STACK ;Establish stack

7103 21 3D 71 LooP LXI H,MESSAGE ;Pcint to the message

7106 CD 5B 00 CALL PSTRING ;Display it

7109 F5 PUSH PSW

710 47 MOV B,A

710B 3E 30 MVI A,30H

710D CE 00 ACI O

710F CD 46 00 CALL PUTC

7112 3E 20 MVI A," "

7114 CD 46 00 CALL PUTC

7117 CD 46 00 CALL PUTC

711A 78 MOV A,B

711B OE 08 MVI C,8

711D 07 AFLAG RLC

T11E SF MOV E,A

711F 3E 30 MVI A,"O"

7121 CE 00 ACI 0

7123 CD 46 00 CALL PUTC

7126 7B MOV AE

7127 0D DCR C

7128 C2 1E 71 JNZ AFLAG

712B CD 43 00 CALL GETC

712E FE 2D CPARE=F

7130 CA 3871 JZ RIGHT

7133 F1 POP PSW

7134 17 RAL

7135 C3 04 71 JMP LOOP

7138 Fl RIGHT POP PSW

7139 iF RAR

All mnemonics copyright of Intel Corporation, 1989

C-6 PROGRAM CARTRIDGE SOURCE CODE LISTINGS

713A C3

713D oD
63
6C
oD

T14E

03
43
63
6l
00

71 JMP Loop
79 20 41 MESSAGE DB
75 6D 75
74 6F 72

END

All mnemonics copyright of Intel Corporation, 1989

ODH, "Cy Accumulator™,0DH,0

PROGRAM CARTRIDGE SOURCE CODE LISTINGS C-7

File Digit 2

7000 7E MOV A,M ;Load a byte into A

7001 81 ADD C ;Add the two low bytes

7002 77 MOV M, A ;Store the result

7003 23 INX H ;Point to the next byte

7004 7E MOV A,M ;Load the byte into A

7005 88 ADC B ;Add the next bytes

7006 77 MOV M,A ;Store the result

7007 23 INX H ;Point to the next byte

7008 TE MOV A,M iLoad a byte into A

7009 8B ADC E ;Add the next bytes

7008 77 MOV M, A ;Store the result

700B 23 INX H ;Point te the next byte

700C 7E MOV A,M ;Load a byte into A

700D 8A ADC D ;Add the high bytes

700E 77 MOV M, A ;Store the result

700F DS 11H

7020 21 00 0O LXI H,0000 ;Clear H-L

7023 06 00 MVI B,0 ;Clear B

7025 09 LOOP1 DAD B ;Add B-C to H-L

7026 3D DCR A ;Decrement A by 1

7027 €2 25 70 JNZ LOOP1 1Do again if A isn’'t O

702A DS 16H

7040 11 FF FF LXI D,OFFFFHE ;D=minus 1

7043 7D LOOP MOV A,L iGet low byte into a

7044 91 SUB C ;Subtract low byte (no borrow)
7045 6F MOV L,A ;Put difference back in 1
7046 7C MOV A,H ;Get high byte

7047 98 SBB B ;iSubtract high byte (with borrow)
7048 67 MOV H,A iDifference back to high

7049 13 INX D ;Count one subtraction (d=d+1)

All mnemonics copyright of Intel Corporation, 1989

C-8 PROGRAM CARTRIDGE SOURCE CODE LISTINGS

704A
704D

704E

7100
7103
7104
7107
7102
710D
7110
7112
7114
7116
7119
711B
711E
7121
7124
7127
7129
712A
712C
712F
T/alcil
7134
1137
7138
7139
713A
713B
713C
713D

D2 43 70

09

CD
EB
22
CD

(e
co
]¢)
3E
cD
3E
CcD
11
CcD
CD
FE
Dg
D6
DA
FE
D2
21
15
29
29
19
29
SF
16

12
44
5C
oo
00
00
3E
46
20
46
o]0}
43
46
2E

30
21
oA
21
00

00

71

71
71
71

71

00

60
00
00
00

71

71
00

PUTC
GETC

BEGIN

STORE1
STOREZ
PROMPT

NCTOK

JNC LOOP
DAD B

DS

EQU
EQU

CALL

XCHG

SHLD

CALL

CALL

JMP

DB

DB

MVI A, "™
CALL PUTC
MVI A," "
CALL PUTC
INPUT LXI
CALL GETC
CALL PUTC
CPI 2EH

;Subtract again if no borrow

;Add divisor back to H-L if done

OB2H

0046H
0043H

PROMPT;Qutput prompt, input value
;Swap again

STOREZ2;Store the second value
SIGN; Input sign
DISPLAY;:Display result
BEGIN:Do it again

00,00

00,00

:Set up an arrow

;Output character

;Set up a space

;Cutput character

D,0;Set D-E to 0

;Get a character

;Echo the character

;Is this a sign?

RC ;Return if so

SUI 30H
JC NOTOCK
CPI OAH
JNC NOTOK
LXI H,0
DAD D

DAD
DAD
DAD
DAD
MOV

O m - U m =

All mnemonics copyright of Intel Corporation, 1989

;Subtract 30 to deASCII
:Try again if less than 0
iIs it more than 97
;Try again if so

iClear H for conversion
;H=D*1

:H=D*2

;H=D*4

;H=D*5

;H=D*10

;Put new value in E

;jClear D

PROGRAM CARTRIDGE SOURCE CODE LISTINGS C-9

713F 419 DAD D ;Add new value

7140 EB XCHG ;Put new value into D-E
7141 C3 21 71 jmp NOTCK :Try again

7144 2A 12 71 SIGN LHLD STOREZ ;Get second value

7147 EB XCHG ;Move it to D-E

7148 2A 10 71 LHLD STCRE1l ;Get first value

714B FE 2D GRS = ;Is it a minus?

714D C2MS AT JNZ ADD ;If not, add

;I1f not, must be subtract

7150 TA MCV A,D ;Move D toc A

7151 2F CMA ;Compliment D (in A)
L 57 MOV D,A ;Restore it

7153 TA MOV A,D ;Move E to A

7154 2F CMA ;Compliment E (in A)
7155 5F MOV E,A ;Restore it

7156 13 INX D ;Make 2’'s compliment
TRk 19 ADD DAD D;Add them

7158 22 10 71 SHLD STORE1l ;Store result

7158 c9 RET

715C 3E OD DISPLAY MVI A,OQODH iCarriage return first
715E E5 PUSH H

715F CD 46 00 CALL PUTC ;Output character
7162 7c MOV A,H ;Sample high byte
7163 FE 80 CPI 80H ;Test high bit

7165 3E 00 MVI A,0 ;iClear A

7167 FA 73 71 JM OK ;If minus, its ok
716A 7C MOV A,H iMove H to A

716B 2F CMA ;Compliment H (in A)
716C 67 MOV H,A ;Restore it

716D 7D MOV A,L iMove L to A

716E 2F CMA ;Compliment L (in A)
716F 6F MOV L,A ;Restore it

7170 23 INX H ;Make 2’'s compliment
7171 3E 02 MVI A,2 :This will make it minus
7173 Ce 2B OK ADI 2Bh;+ or -

All mnemonics copyright of Intel Corporation, 1989

C-10 PROGRAM CARTRIDGE SOURCE CODE LISTINGS

7175
7178
717B
T17E
7181
7184
7187
718A
718D
7190
7191
7193
7196
7197

7198
T719A
719B
719C
719D
71%E
718F
71R0
T1A1
71A4
71A5
71A6
71A8
71A9
71AC
71AD

T1AE

CD 46
01 10
CD 98
01 E8
CD 98
01 64
CD 98
01 oa
CD 98
7D

Cé 30
CD 48
El

c9

le FF

91
eF
7C
98
67
14
D2 9a
09
TA
cé 30
ES
CD 46
El
co

0C
27
Zal
03
71
00
71
00
7/

00

71

00

SUBTR
LOCPY

CALL PUTC
LXI B,10000
CALL SUBTR
LXI B, 1000
CALL SUBTR
LXI B,100
CALL SUBTR
LXI B, 10
CALL SUBTR
MOV A,L
ADI 30H
CALL PUTC
PCP H

RET

MVI D, OFFH
MOV A, L
SUB C
MOV L
MOV A,
SBB B
MOV H
INR D
JNC LOCPY
DAD B

MOV A,D
ADI 30H
PUSH H
CALL PUTC
POP H

RET

END

All mnemonics copyright of Intel Corporation, 1989

;Output character
;Load B with 10000
;:Get ten thousands
;Load B with 1000
;Get thousands
;Load B with 100
;Get hundreds
;Load B with 10
;Get tens

;Units

:Make ASCII
;Display it

;D=minus 1

;Get low byte

;Subtract low byte

;Put difference back

iGet high byte

;Subtract high byte
;Difference to high

;Count one subtraction
;Subtract again if no borrow
;Add divisor to unknown if done
;Put count in A

:Make it ASCII

;Save the pointer

;Display the value

iRestore the pointer

PROGRAM CARTRIDGE SOURCE CODE LISTINGS C-11

File Digit 3

7000 3E 47 MVI A,47H ;put value (47) in A
7002 E6 FO ANI OFOH smask high nibble

7004 Cé& 05 ADI 5 ;Add 5 to Reg A

7006 E6 OF ANI OFH smask low nibble

7008 3E 47 MVI A,47H ;put value (47) in A
700A 06 FO MVI B, OFOH iMask of B’'s high nibble
700C A0 ANA B ;Apply the mask

700D Cé6 05 ADI 5 ;Add 5 to Reg A

700F 06 OF MVI B,OFH ;Mask of B’s low nibble
7011 A0 ANA B ;Apply the mask

7012 DS OeH

7020 3E 07 MVI A,07H ;Put 7 into Accumulator
7022 F6 40 ORI 40H ;Apply 4 to high nibble
7024 Fé6 OF ORI OFH ;Conceal low nibble
7026 E6 F3 ANI OF3H ;Convert low nibble
7028 F6 FF ORI COFFH :Conceal whole byte
702A 06 &5 MVI B, 65H ;Set up value

702C AO ANA B ;Convert whole byte
702D 06 0OA ‘ MVI B,0AH ;Establish mask

702F BO ORA B ;Fill in bits

7030 ds 10H

7040 3E 47 MVI A,47H ;Put 47 into A

7042 EE OF XRI OFH ;XOR with OF

7044 EE OF XRI OFH ;XOR with OF

7046 3E OF MVI A,QFE ;Put OF into A

7048 EE FF XRI OFFH ;XOR with FF

704A EE AS XRI OASH sXOR with A5

704cC DS 14H

All mnemonics copyright of Intel Corporation, 1989

C-12 PROGRAM CARTRIDGE SOURCE CODE LISTINGS

7060 3E 47 MVI A,47H ;Put 47 in Accumulator
7062 Cé 33 ADI 33H ;Add 33

7064 27 DAA ;Decimal adjust

7065 Ce 98 ADI 98H ;Add 98

7067 27 DAA ;Decimal adjust

7068 De 70 SUI 70H ;Subtract 70

706a 87 ADD A ;Add Accumulator

706B 27 DAA ;Decimal adjust

706C Cé 40 ADI 40H ;Add 40

706E 27 DARA ;Decimal adjust

706F Ceé 44 ADI 44H ;Add 44

7071 27 DAA ;Decimal adjust

7072 DS OeH

7080 3E OF MVI A,QOFH iput OF in accumulator
7082 2F CMA ;Compliment A

7083 3E 33 MVI A,33H ;Put 33 in Accumulator
7085 2F CMA ;Compliment A

7086 Ce 47 ADI 47H ;Add 47

7088 3C INR A ;Add 1

7089 DS 07H

7090 3E 61 MVI A,61H ;put "a" in the accumulator
7092 Ee6 DF ANI ODFH ;mask to upper case
70%4 Fe 20 ORI 20H ;mask back to lower case
7096 EE 20) XRI 20H ;Convert to other case
7098 EE 20 XRI 20H ;Convert to other case
T09A DS O6H

T0A0 3E 55 MVI A,55H ;55 alternates ones and zeros
70A2 OF RRC :Everybody move right.
7043 OoF RRC -;Everybody move right.
T0A4 oF RRC ;Everybody move right.
70A5 oF RRC ;Everybody move right.

All mnemonics copyright of Intel Corporation, 1989

PROGRAM CARTRIDGE SOURCE CODE LISTINGS C-13

7046
70A7
7048
70a9
TO0AA
T0AB

2F
07
07
07
07

CMA ;Reverse the pattern.
RLC ;Everybody move left.
RLC ;Everybody move left.
RLC ;Everybody move left.
RLC ;Everybody move left.
END

All mnemonics copyright of Intel Corporation, 1989

C-14 PROGRAM CARTRIDGE SOURCE CODE LIISTINGS

7000
7002
7005
7007
7008
7009
700C

700F

7010
7013
7015
7016
7017
7018
7019
701A
701B

701cC

7020
7022
7024
7025
7028
7027
7028
7029
7024

702B

OE
21
36
23
oD
c2
CD

21
36
66
6C
5D
53
4A
41
78

06
0E
79
17
4F
78
17
79
iF

10
00
00

05
40

00
S5A

80
38

80

70
00

80

File Digit 4

INX
DCR
JINZ

C,10H
H,8000H
M, 00

H

c

7005H

CALL 0040H

DS O1H

LXI
MVI
MOV
MOV
Mov
MOV
MOV
MOV
MOV

H,8000H
M, SAH
H,M

L,H

E,L

D,E

c,D

B,C

A,B

DS 04H

MOV
RAR

B,80H
C,38H
A,cC

C,A
A,B

A,C

DS OSH

All mnemonics copyright of Intel Corporation, 1989

;Set counter reg C to 10H
;Point the H-L pair to 8000H.
;Put 00 into memory M.

; Increment H-L.

:Decrement the counter.
;Repeat if count not 0

;Return to monitor

;Point to 8000H
;Put Z at 8000H

;Copy M to H
iCopy H to L
iCopy L to E
iCopy E to D
iCopy D to C
;Copy C to B
;Copy B to A

;Put B80H in B

;Put 38H in C
:Copy C to A
;Rotate left

;Put back in C
iCopy B to A
jrotate high to CY
;Copy C to A

;jrotate carry right

PROGRAM CARTRIDGE SOURCE CODE LISTINGS C-15

7030
7032
7034
7035
7037
7038
7038
703B
703C

06
OE
79
E6
4F
78
E6
Bl

80
38

TF

80

MVI B, 80H ;Put 80H in B

MVI C,38H sPut 38H in C

MOV A,C iCopy C to A

ANI 7FH ;Mask high bit to 0
MOV C,A ;Put back in C

MOV A,B ;Copy B to A

ANTI 80H :Mask low 7 bits to 0's
ORA C ;OR C with A

END

All mnemonics copyright of Intel Corporation, 1989

C-16 PROGRAM CARTRIDGE SOURCE CODE LISTINGS

7000
7003
7006
7009

700C

7020
7023
7026
7028
7029
702B
702C
702D
702E
T02F
7030

7031

7050
7053
7056
7059
T05A
705D
705E
7061
7064
7065

23
3A
32
22

01
11
3E
02
3E
12

03
1B
oA
1A

21
22
21
F9
21
E3
2A
11
EB
ES9

01
00
ocC
oD

40
41
48

5A

34
00
oo

78

00
50

70
70
70
70

70
70

12
80
80

56

80
70

File Digit 5

LHLD 7001E
LDA 7000H
STA 700CH
SHLD 700DH

DS Q014H

LXI B,7040H
LXI D,7041H
MVI A,48H
STAX B

MVI A,5AH
STAX D

XRA A

INX B

DCX D

LDAX B

LDAX D

DS O1FH

LXI H,1234H
SHLD 8000H
LXI H,8000H
SPHL

LXI H,5678H
XTHL

LHLD 8000H
LXI D,7050H
XCHG

PCHL

All mnemonics copyright of Intel Corporation, 1989

;Load pointer from 7001
iLoad A from 7000
;Store A at 700C

;Stere pointer at 700D

;Point B at 7040

;Point D at 7041

;Set A to 48

iStore A at 7040

iSet A to 5A

iStore A at 7041

;Clear A

;Point B at 7041

iPoint D at 7040
;Retrieve value at 7041

;Retrieve value at 7040

;Place 1234 into H-L
:Store 1234 at 8000
;Point to 8000 with H-L
;Transfer pointer to SP
iPlace 5678 into H-L
:Exchange H-L with 8000
;Load H-L from 8000
;Place 7050 into D-E
;Exchange H-L and D-E
;Indirect jump to 7050

PROGRAM CARTRIDGE SOURCE CODE LISTINGS C-17

File Digit 6

7000 3E 4A MVI A,"J" ;Put the letter "J" into A
7002 CD 46 0O CALL 0046H ;Display the letter

7005 3E 44 MVI A,"D" ;Put the letter "D" into A
7007 CD 46 00 CALL 0046H ;Display the letter

700A 3E 48 MVI A,"H" ;Put the letter "H" into A
700C CD 46 00) CALL 0046H ;Display the letter

700F 3E 20 MVI A,20H ;Put a space into A

7011 CD 46 00 CALL 0046H ;Display the space

7014 C3 00 70 JMP 7000H ;Jump to 7000

7017 DS 09H

7020 21 29 70 LXI H,7029H ;Point to the data

7023 CD 5B 00 CALL 0O05BH ;Display the data

7026 C3 3D 70 JMP AROUND ;Jump around the data

7029 54 68 69 73 DB "This" ;Data

702D 20 69 73 20 DB " is " ;:Data

7031 61 20 6D 65 DB ™a me™ ;Data

7035 73 73 61 67 DB "ssag" ;Data

7039 65 2E 20 00 DB "e. ",0 ;Data

703D [o]o; AROUND NOP ;Do nothing

703E C3 3E 70 SELF JMP SELF ;Hold here

7041 DS OFH

7050 AF START XRA A ;Set Z & P, Clear § & CY
7051 CA 60 70 JZ PT1 ;Jump if Zero

7054 F2 63 70 PT5 JP PT2 ;Jump if Positive

{05 3C PT6 INR A ;Clear 2 & P

7058 C2 66 70 JNZ PT3 ;Jump if Not Zero

705B De 02 PT7 SUI 2 ;Set S & CY

705D DA 6% 70 PT8 JC PT4 ;dump if Carry

7060 EA 54 70 PT1 JPE PTS ;Jump if even Parity

7063 D2 57 70 B2 JNC PT6 ;Jump if no carry

All mnemonics copyright of Intel Corporation, 1989

C-18 PROGRAM CARTRIDGE SOURCE CODE LISTINGS

7066
7069

7086C

7070
7073
7074
7077
7078
707B
707E
T07F
7080
7083
7084
7085
7088
708B
T08E

E2
FA

21
7E
CcD
BE
cz2
11
EB
15
DA
EB
23
c3
CD
c3

5B
50

00

46

88

01

8B

]
58
8B

70
70

40

00

70

90

70

70
00
70

PT3
PT4

BEGIN
LOOP

FOUND
FINISHED

JPO PT7
JM START

DS 04H

LXI H,4000H

MOV A,M
CALL 0046H
CMP M

JNZ FOUND
LXI D,9001H
XCHG

DAD D

JC FINISHED
XCHG

INX H

JMP LOOP
CALL 0058H
JMP FINISHED
END

All mnemonics copyright of Intel Corporation, 1989

;Jump if odd Parity

;Jump if minus

iPoint to First address
iGet value from memory
+Display it

;Compare A to memory value
;Jump if FOUND different
;Set D to 6FFF compliment
;Trade D-E and H-L

;Add D-E to H-L

iJump if FINISHED

;Trade back if not
;Increment pointer
;Repeat

;Display address

;Loop to self forever

PROGRAM CARTRIDGE SOURCE CODE LISTINGS C-19

File Digit 7

BS EQU 8 ;BS means Back Space
GETC EQU O0043H ;Get Character
PUTC EQU 0046H ;Put Character
7000 CD 43 00 BEGIN CALL GETC ;Get a character
7003 FE 2B CPI "+ sIs it "+"7?
7005 CC O0E 70 CZ UPDN ;Call up/down if so
7008 CD 46 00 CALL PUTC ;Display the character
700B C3 00 70 JMP BEGIN ;Do it all again
700E 21 FF 7F UPDN LXI H,7FFFH ;Point to safe memory
7011 36 50 MVI M, "P" ;Put a "P" into memory
7013 7E AGAIN MOV A,M ;Set up the letter
7014 CD 46 00 CALL PUTC ;Display it
7017 3E 08 MVI A,BS ;Set up a backspace
7019 CD 46 00 CALL BUTC ;Display the backspace
701C CD 43 00 CALL GETC ;Get another key
701F FE 3F CPI "2" ;Is it Help?
7021 CA 2F 70 JZ DONE ;If so, we’'re done
7024 FE 2B CPI "+" ;Is it "+
7026 CA 2B 70 JZ PLUS1 ;Add one if so
7028 35 DCR M ;Must be minus
702A 35 DCR M ;Do this twice to save space
702B 34 PLUS1 INR M ;Add one to character
702C €3 13 70 JMP AGAIN ;Do it again
702F 7E DONE MOV &,M ;Set up the character
7030 C9 RET ;Return
7031 END

All mnemonics copyright of Intel Corporation, 1989

C-20 PROGRAM CARTRIDGE SOURCE CODE LISTINGS

File Digit 8
7000 31 FF 6F BEGIN LXI SP,6FFFH ;Put stack at 6FFF
7003 21 22 70 LXI H,TARGET ;Put a value into H-L
7006 E5 PUSH H iStore it on the stack
7007 ES PUSH H ;Store it again
7008 CD 11 70 CALL RETURN ;Call a subroutine
700B D1 POP D :Take from stack put in D-E
700C F1 POP PSW ;Take from stack put in PSW
700D F5 PUSH PSW ;Put PSW on stack
700E C1 POP B ;Take from stack put in B-C
T700F 3B DCX SP iDecrement the stack pointer
7010 3B DCX SP ;Decrement the stack pointer
7011 c9 RETURN RET ;A one step subroutine
7012 C3 00 70 JMP BEGIN ;Go to the beginning
7015 DS ODH
7022 CD 40 70 TARGET CALL SHOWPC ;Display the calling address
7025 €3 00 70 JMP BEGIN ;Go to the beginning
7028 DS 018H
7040 E1 SHOWPC POP H ;Get the return address

;from the stack into H.

7041 3B DCX SP ;Correct the SP so return
7042 3B DCX SP ; address is back on top.
7043 2B DCX H ;Adjust for three bytes
7044 2B DCX H ; in the
7045 2B DCX H ; CALL instruction
7046 CD 58 00 CALL 0058H ;Display H-L
7049 CD 43 00 CALL 0043H ;Pause here for a key
704C (6] RET ;Return to source
704D DS 023H

All mnemonics copyright of Intel Corporation, 1989

PROGRAM CARTRIDGE SOURCE CODE LISTINGS C-21

7070
7073

7076

7100
7103
7105
7106
7108

7108
710C
710E
7111
7114
7116
7119
711A

711D
7120
7122
7123
7126
7128
712B
T12E
7130
Y]
Zjake i)
7138

CD 40 70

C3 00 70

31
3E
F5
3E
F5

cD
FE
GC
CcD
FE
CA
F5
c3

21
36
7E
CcD
3E
CcD
cD
FE
CA
FE
CA
35

FE 7F

00

43
2B
1D
46
3F
40

0%

FF
50

46
08
46
43
3F
3E
2B
3A

00

7l
00

7l

71

F

00

00
00

71

71

CALL SHOWPC
JMP BEGIN

DS 08AH

BS EQU 8
GETC EQU 0043H
PUTC EQU 0046H
STACK EQU 7FFEH
START LXI SP,STACK
MVI A,0Q

PUSH PSW

MVI A,ODH

PUSH PSW

CALL GETC
CPASSEE

CZ UPDN
CALL PUTC
CPI ™2"

JZ PLAYBAK
PUSH PSW
JMP INPUT
UPDN LXI H,7FFFH
MVI M,"P"
AGAIN MOV A,M
CALL PUTC
MVI A,BS
CALL PUTC
CALL GETC
CEIt2E
JZ DONE
CPI "+"
JZ PLUS1
DCR M

;Display the calling address

;Go to the beginning

;BS means Back Space
;Get Character
;Put Character

;We’ll put the stack here

;Establish a stack
;Set up a delimiter
;Put it on the stack

;Set up a carriage Return

;Put that on the stack

;Get a character
;Is it a "+"?
;1f so, call ud/down
;Display it

;Is it RPO?

;Play it back

;Save the character

;Get the next Charaéter

;point to memory

;Put a "P" into memory
;Set up the letter
;Display it

;Set up a backspace
;Display the backspace
;Get another key

;Is it Help?

;I1f so, we're done
S SRR

;Add one if so

;Must be minus

All mnemonics copyright of Intel Corporation, 1989

C-22 PROGRAM CARTRIDGE SOURCE CODE LISTINGS

7139
7134
713B
713E
713F

7140
7141
7143
7146
7149
714C

35
34
c3
TE

co

Fl
E6
CA
CD
C3

22

00
46
40

71

71
00
71

PLUS1

DONE

PLAYBAK

DCR M
INR M
JMP AGAIN
MOV A,M
RET

POP PSW
ANI OFFH

JZ START
CALL PUTC
JMP PLAYBAK
END

All mnemonics copyright of Intel Corporation, 1989

;Do this twice to save space
;Add one to character

:Do it again

iSet up the character

;Return

iGet a character off stack
+Is it the delimiter?

;I1f so, start all over

iIf not, display it

;Do it again

PROGRAM CARTRIDGE SOURCE CODE LISTINGS C-23

File Digit 9

7000 21 OE 70 LXI H,MESSG ;Point to the message
7003 CD 5B 00 CALL OOS5SBH :Display the message
7006 CD 67 00 CALL 0067H ;Wait a moment

7009 C9 RET ;Go to address after RST
700A CF LOCP RST 1

700B C3 0A 70 JMP LOOP :Do it again

700E 54 68 69 73 MESSG DB "This™

7012 20 69 73 20 DB " is ™

7016 74 68 65 20 DB "the "

7C1A 70 72 6F &7 DB "prog"

701E 72 61 6D 2E DB "ram."

7022 00 DB 0O

7023 END

All mnemonics copyright of Intel Corporation, 1989

C-24 PROGRAM CARTRIDGE SOURCE CODE LISTINGS

File Digit A

PUTC EQU 46H
7000 31 FF 6F LXI SP,6FFFH ;Establish a stack
7003 DB 00 BEGIN IN 00 ;Get Keyboard column 1
7005 FE FF CPI OFFH iIs a key pressed
7007 CA 03 70 JZ BEGIN +IF NOT FORGET IT
700A 47 MOV B,A 7Save this value
700B DB 00 Lo IN 00 1Get coll again
700D FE FF CPI OFFH iIs key released?
700F C2 OB 70 ‘ JNZ LO :;Loocp until done
7012 78 w MOV A, B ;Restore the value
7013 CD 19 70 CALL FINDIT ;Find and display it.
7016 C3 03 70 i JMP BEGIN iTry again if not
7019 21 2D 70 FINDIT LXI H,TABLE ;Point to the table
701C A7 ‘ ANA A ;iClear the Carry
701D 07 LOOoP RLC ;Rotate into the carry
701E F5 PUSH PSW iSave the value
701F D2 27 70 . JNC FOUND ;Jump if found
7022 23 I INX H ;Point to the next item
7023 F1 POP PSW iRestore the value
7024 C3 1D 70 JMP LOOP ;Try again
7027 F1 FOUND POP PSW iClean up the stack
7028 7E MOV A,M +Read the table
7029 CD 46 00 CALL PUTC ;Display it
702C cC9 RET ;Return
702D 00 TABLE DB 00H iHigh bit Col 1 is clear
702E 33 DB 33H ;3 key
T02F 36 DB 36H ;6 key
7030 39 DB 39H 19 key
7031 43 DB 43H iC key
7032 46 DB 46H ;F key
7033 3F DB 3FH ;1?2 key

DS OCCH

All mnemonics copyright of Intel Corporation, 1989

PROGRAM CARTRIDGE SOURCE CODE LISTINGS C-25

7100
7103
7105
7107
710a
710D
710E
7110
7112
7115
7118
T11A
711cC
711F
7122
7123
7125
7127
7127
712D
712F
7131
7134
7137
7138
713A
713C
713F
7142
7143
7146
7149
714A
714B
714cC
T14F

31
DB
FE
CA
21
47
DB
FE
CA
C3
DB
FE
CA
21
47
DB
FE
CA

DR
FE
CA
21
47
DB
FE
CA
c3
78
Cch
C3
A7
07
F5
D2
23

FF
00
FF
18
5A

00
FF
42
OE
10
FF
2D
61

10
FF
42
23
20
FF
03
68

20
FF
42
38

49
03

54

6F

71
71

71
71

Val
71

71
71

71
71

71

71

71

71

PUTC EQU 46H
LXI SP,6FFFH ;Establish a stack

BEGIN1 IN 00 ;Get Keyboard column 1
CPI OFFH :Is a key pressed
JZ COLM2 ;If Not try column 2

LXI H,TABLEl ;Point tc the table

MOV B, A ;Save this value
L1 IN OCH ;Get coll again

CPI OFFH :Is the key up?

JZ UPKEY ;If so, we’re done

JMP L1 +Loop until key up
coLM2 IN 10H ;Get Keyboard column 2

CPI OFFH ;Is a key pressed

JZ COLM3 ;If so try column 3

LXI H,TABLEZ ;Point to the table

MOV B,A ;Save this value
L2 IN 10H ;Get col2 again

CPI OFFH ;Is the key up?

JZ UPKEY :I1f so, we're done

JMP L2 ;Loop until key up
COLM3 IN 20H ;i Get Keyboard column 3

CPI OFFH ;Is a key pressed

JZ BEGIN1 ;If NOT, try again

LXI H,TABLE3 ;Point to the table

MCV B,A ;Save this value
L3 IN 20H ;Get col3 again

CPI OFFH :Is the key up?

JZ UPKEY ;I1f so, we’'re done

JMP L3 ;Loop until key up
UPKEY MOV A,B ;Restore the value

CALL FINDIT1 ;Find and display it
JMP BEGIN1 ;Try again if not

FINDIT1 ANA A ;iClear the Carry
LOOP1 RLC ;Rotate into the carry
PUSH PSW ;Save the value

JNC FOUND1 sJump if found

INX H ;Point to the next item

All mnemonics copyright of Intel Corporation, 1989

C-26 PROGRAM CARTRIDGE SOURCE CODE LISTINGS

7150
7151
5 d
7155
7156
7159
7152
715B
715C
715D
715E
715F
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
T16A
716B
716C
716D
716E
716F

Fl
c3
Fl
7E
CcD
co
00
33
36
39
43
46
3F
00
32
35
38
42
45
2B
30
31
34
84,
41
44
2D

4A 71

46 00

FOUND1

TABLE1

TABLEZ2

TABLE3

POP PSW
JMP LOOP1
POP PSW
MOV A, M
CALL PUTC

RET
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
END

All mnemonics copyright of Intel Corporation, 1989

00H
33H
36H
39H
43H
46H
3FH
00H
32H
35H
38H
42H
45H
2BH
30H
31H
34H
37H
41H
44H
2DH

Restore the value
:Try again

iClean up the stack
:Read the table
;Display it

;Return

+High bit Col 1 is clear
i3 key

16 key

;9 key

:C key

iF key

i? key

#High bit Col 1 is clear
;2 key

;5 key

;8 key

;B key

;E key

i+ key

:0 KEY

i1l key

i4 key

;7 key

;A key

;D key

;= key

PROGRAM CARTRIDGE SOURCE CODE LISTINGS C-27

7000
7003
7005
7007
700A
700D
7010
7011
7012
7015
7016
7019
701¢C
701F
7021
7024
7025
7026
7029
7022
702B
702E
7031
7032
7035
7036
7037
7038

31
3E
D3
21
22
21
TE
A7
CA
23
CD
Ccb
c3
D3
CcD
FB
ceo
c3
E5
DS
11
21
19
D2
D1
El
co
53
6F
65
65

FFP

AD
1F
16
38

oD

46

29

10

A0
29

oD

01
00

31

61

73
oD

70
68
70

70

00

70

70

70

70

00

00

70

6D 65 20
64 20 6D
73 61 67
00

File Digit B

PUTC
INTR

BEGIN

AGAIN
LOOP

INTRUPT

PAUSE

DLAY

MSG1

EQU 0046H
EQU 6816H
LXI
MVI A,OFFH
OUT OAQOH

SP, 6FFFH

;Routine to display character

;Vector address for RST

;Establish a stack
7Set all bits high

;Turn on the LEDs

LXI H,INTRUPT ;Pcint to interrupt routine

SHLD INTR
LXI H,MSG1
MOV A, M
ANA A

JZ AGAIN
INX H

CALL PUTC
CALL PAUSE
JMP LOCP
OUT OAQH
CALL PAUSE
EI

RET

JMP AGAIN
PUSH H
PUSH D

LXI D,1
LXI H,0
DAD D

JNC DLAY
POP D

POP H

RET

DB "Same "
DB "old m"

DB "essag"

DB "e",0DH,0

;Change the vector
;Point to the message
;Get the character
iIs it zero?

;If so, start over

;Point to next character
;Display it

;Wait a while

iGo back for next character
:Display ASCII on LEDs
;Wait a while

iReenable the interrupts
;iReturn for service routine
;For Step 9

;Save H

iSave D

;iSet up increment

:Clear counter

;Increment H

;If carry, we’re done
;iRestore D

;Restore H

;Pause routine done

;This is the message

All mnemonics copyright of Intel Corporation, 1989

C-28 PROGRAM CARTRIDGE SOURCE CODE LISTINGS

7000
7003
7004
7006
7008
7009
700C
700F
7012
7013
7014
7017
701A
701B
701E

7021
7022
7024
7026
7027
7028
702B
702C
702D
7030
7033
7034
7037
703A

31
20
E6
Fé
30
21
22
21
7E
A7
CA
CD
23
(o39]
C3

20
E6
Fé
30
ES
21
TE
A7
CA
CcD
23
cD
Cc3
3E

FF

06
08

21
13
56

OF
46

40

12

06
09

68

3A

46

40

2B
08

6F

70
68
70

70
00

70
70

70

70

6o

70
70

File Digit C

PUTC
RSTS5
COUNT

BEGIN

AGAIN
LOOP

INTRUPT

LP

DONE

EQU 0046H
EQU 6813H
EQU 10000

LXI SP,6FFFH

RIM
ANI 06H
ORI 08H
SIM

;Display character routine
;RST 5.5 vector

;Count

;Establish Stack

;Read the interrupt mask
;Add RST 5.5 to mask

;Add mask set enable (mse)

;Establish new mask

LXI H,INTRUPT ;Point to new routine

SHLD RST55
LXI H,MsG1
MOV A,M
ANA A

JZ AGAIN
CALL PUTC
INX H

CALL DELAY
JMP LOOP

RIM

ANI O6H
ORI 09H
SIM

PUSH H
LXI H,MSG
MOV A, M
ANA A

JZ DONE
CALL PUTC
INX H
CALL DELAY
JMP LP
MVI A,08H

All mnemonics copyright of Intel Corporation, 1989

;Replace old vector

;Point to message

iGet the character

;Set the flags

+If message is done, repeat
;Display character

;Point to next character
;Pause a while

;Gaback for next character

iGet the mask

iSave RST 7.5 and RST 6.5
;Add mse & mask for RST 5.5
:Mask RST 5.5

;Save H-L

;Point to RST 5.5 message
;Get the character

:Set the flags

;Jump if message is done
;Display it

;Point to next character
:Pause a while

;Repeat for next character

;We’ll reenable interrupts

PROGRAM CARTRIDGE SOURCE CODE LISTINGS C-29

703C 30 SIM ;Clear RST interrupt mask
703D El POP H ;Restore H-L

703E FB EI ;Reenable interrupts

703F C9 RET iInterrupt routine complete
7040 D5 DELAY PUSH D ;Save D

7041 F5 PUSH PSW ;Save PSW

7042 C5 PUSH B ;Save B

7043 06 01 MVI B,1 ;Load count multiplier
7045 11 10 27 TIMER LXI D,COUNT ;Set counter

7048 1B Lp3 DCX D ;Decrement count

7049 7A MOV A,D ;load .high byte to A

7042 B3 ORA E ;Are both zero?

704B C2 48 70 JNZ LP3 ;If so, timer is done
704E 05 DCR B ;Decrement multiplier
T04F C2 45 70 JNZ TIMER ;Repeat till Multiplier=0
7052 cl POP B ;Restore B

7053 F1 POP PSW ;Restore PSW

7054 D1 POP D ;Restore D

7055 €9 RET ;Delay done

7056 53 61 6D 65 20 MSG1 DB "Same old message™,0DH,0

6F 6C 64 20 6D
65 73 73 61 &7

65 0D 00

7068

7068 7B 69 6E 74 20 MSG DB "{int 5.5}",00
35 2E 35 7D 00

7072 END

All mnemonics copyright of Intel Corporation, 1989

C-30 PROGRAM CARTRIDGE SOURCE CODE LISTINGS

File Digit D-E-F (WISE)

CR EQU 00DH
LF EQU 00AH
DEL EQU 008H
BSPACE EQU 008H
GETC EQU 0043H
PUTC EQU 0046H
SETRS232 EQU 0049H
SETLCD EQU 004CH
GETHBYTE EQU Q04FH
GETHWORD EQU 0052H
PUTHBYTE EQU 0055H
PUTHWORD EQU 0058H
PUTSTRING EQU 005BH
COPYUP EQU O05EH
COPYDOWN EQU 0061H
COoPY EQU 0064H
PAUSE EQU 0067H
PUTDSWRD EQU 006AH
PUTUSWRD EQU 006DH
MONIT EQU 0040H
STACK EQU 6FFFH
7000 31 FF 6F BEGIN LXI SP, STACK
7003 CD 6E 73 CALL SHOTEL
7008 57 20 2A 20 49 DB "W =*I*s§ *x E" CR,LF,00
20 2A 20 53 20
2A 20 45 0D 0A
00
7016
7016 06 0A MVI B, O0AH
7018 21 9A 73 LXI H, PCSTOR
701B 36 00 ZLOOP MVI M, O00H
701D 23 INX H
701E 05 DCR B

All mnemonics copyright of Intel Corporation, 1989

PROGRAM CARTRIDGE SOURCE CODE LISTINGS C-31

701F
7022
7025
7028

702B
702E
7031
7034
7036
7039
703C
703D
703E
7040
7043
7046

7048
7049
704C
704D
704F
7052

7055
7058
7052
705D
705E
705F
7060
7061
7062
7065
7067

cz
25
22
c3

21
31
CcD
FE

CD
77
23
FE
Ca
C3
3E

BD
CA
2B
3E
ch
c3

2T
06
11
13
1A
BE
1E
23

1B
00
A4
6C

As
FF
43
08
46
46

oD
)
31
A6

31

08
46
31

B6
00
AS

70
80
73
72

73

6F

00

70
00

70
70

70

00

70

73

i3

CA 5D 70

FE

20

DA 77 70

JNZ ZLO0OP

LXI H, 8000H

SHID SPSTOR

JMP SPREAD
NEXT1 LXI H, BUFFR

LXI SP, STACK
INLOOP CALL GETC

CPI DEL

Jz ERASE

CALL PUTC

MOV M, A

INX H

CPI CR

JZ DONEIN

JMP INLOOP
ERASE MVI A,BUFFR ;LOW BYTE ONLY

CMP L

JZ INLOQOP

DCX H

MVI A, BSPACE

CALL PUTC

JMP INLOOP
DONEIN LXI H, TABLE

MVI B, 000H
FINDIT LXI D, BUFFR-1
KEEPON INX D

LDAX D

CcMP M

MOV AM

INX H

JZ KEEPON

CPI 020H

JC FOUND

All mnemonics copyright of Intel Corporation, 1989

C-32 PROGRAM CARTRIDGE SOURCE CODE LISTINGS

706A
706B
706C
T06E
7071
7072
7075

7077
7078
7079
707C
707F
7082
7085
7088
7089
708A

708D
7090

70A4

70A7
70A8

70AB
70AD
70AE
70B0
T0B3
70B6

23
FE
D2
04
c2
3E

F5
78
32
32
21
22
22
Fl
3D
cz2

CcD
oD
61
€D
6E
c3

3D
c2

OE
1A
FE
ca
CcD
oD
4F
6E

20
6A

S5A
01

45
S5E
00
46
SF

A7

6E
20
6C
6E
69
25

Cé

01

0D
2C
6E
62
70
64

70

72
73
00
72
73

70

73
49
69
65
63
73

70

72
73
61
65
00

6E 76
64 20
6D 6F
20 00

64 20
72 61

PASSBY

FOUND

TYPE2

BADOP

PUSH
MoV
STA
STA
LXI
SHLD
SHLD
POP
DCR

CALL
DB

CALL
DB

All mnemonics copyright of Intel Corporation, 1989

A,M

H

020H
PASSBY
B
FINDIT
A,001H

PSW

A,B
CPCODE
CONDTN
H, CO00QH
ARGMNT
ADDRES
PSW

A

TYPE2

SHOTEL
CR,"™ INVALID MNEMONIC ",0

NEXT2

CR

DOINSTR

SHOTEL

CR, "BAD OPERAND",0

PROGRAM CARTRIDGE SOURCE CODE LISTINGS C-33

70C3

70C6
70C7

70CA
70CB
70CD
70D0
70D3
70D4
70D7
70D8
70D9
70DC
70DD
70E0
70E3
70E4
70E®6
T0E7
70E9
T0EC

T0EF
70F0

70F3
70F4
70F6
70F9
70FC

7112

C3

3D
cz2

1A
FE
cz
2A
F9
2A
23
ES
21
39
22
Sh
78
E6
6F
26
22
C3

3D
cz2

1A
FE
c2
cD
0D
12
20
eF
72
CD

25

EF

0D
B3
A4

9A

00

A4

38

00
9A
eC

15

oD
B3
6E
72
6E
74
6E
o]¢)
40

73

70

70
73

73

00

73
6F

)
72

71

70
73
65
69
6F
69

00

74 75
6E 67
20 6D
74 6F

JMP NEXT2
TYPE3 DCR A

JINZ TYPE4

LDAX D

CPI CR

JNZ BADOP

LHLD SPSTOR

SPHL

LHLD PCSTOR

INX H

PUSH H

LXI H,0

DAD SP

SHLD SPSTOR

LXI SP, STACK

MOV a,B

ANI 038H

MOV L,A

MVI H,0

SHLD PCSTOR

JMP SPREAD
TYPE4 DCR A

INZ TYPES

LDAX D

CPI CR

JNZ BADOP

CALL SHOTEL

DB CR, "RETURNING TO MONITOR",0

CALL MONIT

All mnemonics copyright of Intel Corporation, 1989

C-34 PROGRAM CARTRIDGE SOURCE CODE LISTINGS

7115 3D TYPES DCR A
7116 cz2 28 71 JNZ TYPE6
7119 ia LDAX D
711A FE OD CPI CR
711C C2 B3 70 JNZ BADOP
711F 2A A2 73 LHLD HSTCR
1122 22 9A 73 SHLD PCSTOR
7125 C3 eC 72 JMP SPREAD
7128 3D TYPE® DCR A
7129 €2 4F 71 JINZ TYPE7
712C 1A LDAX D

712D FE 0D CPI CR
712F C2 B3 70 JNZ BADOP
7132 OE 01 MVI C,1
7134 CD 64 73 CALL UPDATE
7137 CD 59 73 CALL CTEST
713A 2A A4 73 LHLD SPSTOR
713D F9 SPHL

713E El POP H
713F 22 9A 73 SHLD PCSTOR
7142 21 00 00 LXI H,0
7145 39 DAD SP
7146 22 A4 73 SHLD SPSTOR
7149 31 FF 6F LXI SP, STACK
714cC C3 6C 72 JMP SPREAD
714F F5 TYPE7 PUSH PSW
7150 01 00 o0 LXI B,O
7153 21 00 00 LXI H,0
7156 1a LDAX D

7157 FE 0D CPI CR
7159 cz2 74 71 JNZ HLOOP
715C CD 6E 73 CALL SHOTEL
T15F 0D 6D 69 73 73 DB CR, "MISSING ARGUMENT", 0

All mnemonies copyright of Intel Corporation, 1989

PROGRAM CARTRIDGE SOURCE CODE LISTINGS C-35

7171
7174
7175
7176
7178
717B
717D
7180
7182
7185
7187
7189
718C
718E
7191
7192
7193
7194
7195
7196
7197
719A
719D

71B7
T1BA
71BD

71BE
71BF

69
72
6E
c3
1A
13

CA
De
DA
FE
DA
Deé

DA
FE
D2
29
29
29
29
4F
09
c3

0D
63
63
€69
65
00
c3
22

3D
c2

6E
67
74
25

0D
BA
30
%A
oa
91
07
(07:Y
9A
10
9A

74
6E
62
68
74
6E
72

25
46

E4

67 20 61

75 6D 65

00
73

71

71

71

71

71

7/l
73
61
61
65
20
61

73
72

71

64
72
72
eF
6E

20
6l
20
70
64

HLCOP LDAX
INX
CPI
JZ
SUI
JC
CPI
Jc
SUI
CPI
JC
CPI

HEXOK DAD
DAD
DAD
DAD
MOV
DAD

ERROR CALL
DB

NOMORE SHLD
POP

DCR

NEXT2
D

D

CR
NOMORE
30H
ERROR
OAH
HEXOK
007H
00AH
ERROR
010H
ERROR
H

;A

mw o &-n m -

HLCOP
SHOTEL
CR, "BAD CHARACTER IN OPERAND",O0

All mnemonics copyright of Intel Corporation, 1989

C-36 PROGRAM CARTRIDGE SOURCE CODE LISTINGS

71c2
71C4
71C5
71c7
71Ca
71CD

71E1

T1E4
71ES

T1E8
71E9
71EB
71EE
71F1
T1r4
71F7
71F8
71FB

71FE
T1FF

7202
7203
7205
7208
720B
720E
7211
7214
7215
7218

OE
e
FE
CA

0D
6D
74
61
c3

3D
c2

EB
CE
CcD
21
22
c3
EB
27
C3

3D
c2

EB

CD
21
22
Cc3
2A
F9
22
ES

02

00
2c
6E
41
65
6F
72
25

FE

03
64
F7
SF
59

oA
6C

23

03
o4
akal
SF
59
Ad

9A

72
73
72
6E
6F
67
73

71

73
71
73
73

73
72

72

73
72
73
73
)

73

67 75
74 20
20 eC
€5 00

TYPES

JBACK

TYPES

CBACK

XCHG
MVI
CALL
LXI
SHLD

LHLD
SPHL
LHLD
PUSH

All mnemonics copyright of Intel Corporation, 1989

St

A,H

0

DOINSTR

SHOTEL

CR, "ARGUMENT TOO LARGE",0

NEXT2

TYPES

c,3
UPDATE
H, JBACK
ADDRES
CTEST

PCSTOR
SPREAD

TYPEA

c.3
UPDATE
H, CBACK
ADDRES
CTEST

SPSTOR

PCSTOR
H

PROGRAM CARTRIDGE SOURCE CODE LISTINGS C-37

7219 21 00 00 LXI H,0
721C 39 DAD sP
721D 22 A4 73 SHLD SPSTOR
7220 31 FF 6F LXI SP, STACK
7223 EB XCHG

7224 22 9A 73 SHLD PCSTOR
7227 C3 6C 72 JMP SPREAD
7223 OE 03 TYPEA MVI C,3
722C CD 64 73 DOINSTR CALL UPDATE
722F 2a 9C 73 LELD PSWSTOR
7232 ES PUSH H

7233 F1 pop PSW
7234 2A 9E 73 LHLD BSTOR
7237 ES PUSH H

7238 c1 poP B

7239 2A AO 73 LHLD DSTOR
723¢ ES PUSH H

723D D1 POP D

723E 2A Ad 73 LHLD SPSTOR
7241 F9 SPHL

7242 27 A2 73 LHLD HSTOR
7245 OPCODE DS 1

7246 ARGMNT DS 2

7248 32 9C 73 STA PSWSTOR
7248 1F RAR

724C 22 A2 73 SHLD HSTOR
724F 21 00 00 IXI H,0
7252 39 DAD sp

7253 22 A4 73 SHLD SPSTOR
7256 31 FF 6F LXI SP, STACK
7259 17 RAL

725A 3a 9c 73 LDA PSWSTOR
725D FS PUSH PSW
725E E1 pOP H

725F 22 9C 73 SHLD PSWSTOR

All mnemonics copyright of Intel Corporation, 1989

C-38 PROGRAM CARTRIDGE SOURCE CODE LISTINGS

7262
7263
7264
7267
7268
7269

726C
126F

72A8
72AB
72AC
T2AF
72B2
72B5
72B6
72B9
72BC
72BD
72C0
72¢€1
72C4
72C5
72C8
72CB
72CC

C5
El
22
D5
El
22

CD
oD
20
43
75
74
20
20
20
20
%)
33
oD
2A
EB
cD
CD
2A
7D
cD
CD
07

07
Cch
o7
CD
Cch
7c
F5

9E

A0

6E
50
53
20
6D
6F
20
20
20
20
50
74
00
9A

7D

54

ac

3B
3B

3B

3B

3B
54

]

73

73
43
S5A
41
75
72
42
44
48
4D
20
61

73

73

73

73

73
73

73

73

7l
73

20
41
63
6C
20
20
20
20
20
20
63

20
50
63
61
41
43
45
ac
20
20
6B

SPREAD

PUSH
POP
SHID
PUSH
POP
SHLD

CALL
DB

DB

DB

LHLD
XCHG
CALL
CALL
LHLD
MOV
CALL
CALL
RLC
CALL
RLC
CALL
RLC
CALL
CALL
MOV
PUSH PSW

All mnemonics copyright of Intel Corporation, 1989

SHOTEL
CR, "PC SZAPC Accumulator A"

" BC DE HL M 8P =

"Stack",CR,0

PCSTOR

HWORD
BLNK1
PSWSTOR
A, L
AFLAG
AFLAG

AFLAG

AFLAG

AFLAG

BLNK1
AH

PROGRAM CARTRIDGE SOURCE CODE LISTINGS C-39

72CD
72D0
72D3
72D6
72D9
72DA
72DD
72DE
72E1
T2E4
T2E7
T2EA
72ED
72EE
72F1
72F4
T2F5
T2F8
72FB
72FE
7301
7304
7307
730A
730D
730E
7311
7314
7317
7318
731B
731E
731F
7320
7321
7322
7325

CcD
CcD
cD
CcD
F5
cb
Fl
CD
Ccb
CD
CD
CcD
Fl
CD
CD
5C

cD
2A
CD
2A
CD
2A
CcD
SE
CD
CD
2A
EB
CcD
CD
EB

253
56
CcD
CD

3B
3B
3B
3B

54

3B
3B
3B
3B
54

54
54

81
54
9E
49
AQ
49
A2
49

81
54
Ad

7D
54

D
6E

73
73
73
T

73

73
7]
73
B/
73

73
73

73
73
73
73
73
T
13
73

73
73
73

73
73

73
2

BITWISE CALL
CALL
CALL
CALL
PUSH
CALL
POP
CALL
CALL
CALL
CALL
CALL
POP
CALL
CALL
MOV
CALL
CALL
LHLD
CALL
LHLD
CALL
LHLD
CALL
MOV
CALL
CALL
LHLD
XCHG
CALL
CALL
XCHG
MoV
INX
MOV
CALL

NEXT2 CALL

AFLAG
AFLAG
AFLAG
AFLAG
PSW
BLNK1
PSW
AFLAG
AFLAG
AFLAG
AFLAG
BELNK1
PSW
BLNK1
BLNK1
E,H
HBYTE
BLNK1
BSTOR
SHOREG
DSTOR
SHOREG
HSTOR
SHOREG
E,M
HBYTE
BLNK1
SPSTOR

HWORD
BLNK1

E,M

H

D,M
HWORD
SHOTEL

All mnemonics copyright of Intel Corporation, 1989

C-40 PROGRAM CARTRIDGE SOURCE CODE LISTINGS

7328

7338

733B
733C
733D
733F
7342
7344
7347
7348

7349
734R
734D
T34E
7351

7354
7356

7359
735C
735D
735E
735F
7361

7364
7367
7369
7364
736D

0D
72
6F
00
C3

07
6F
3E
DA
3E
CD
D
co

5C
CD
5D
CD
C3

3E
c3

2A
ES
Fl

c3

2A
06
09
22
Cco

49
75
6E

2B

31
44
30
46

81

81
54

20
96

el

6C

9A
00

oA

6E 73 74
63 74 69
3F 20 20

70

e

00

73

73
73

(3

73

72

73

73

AFLAG

FLAGON

SHOREG

BLNK1

CTEST

CONDTN
ADDRES

UPDATE

DB

RLC
MOV

CALL
MOV
RET

LHLD
PUSH
PCOP
Ds
Ds
JMP

LHLD

DAD

SHLD
RET

All mnemonics copyright of Intel Corporation, 1989

CR, "INSTRUCTION? ",0

NEXT1

L,A
A,"1"
FLAGON
A, "O"
PUTC
A, L

E.H
HBYTE
E,L
HBYTE
BLNK1

A' ”n "
OUTPUT

PSWSTOR
H

PSW

1

2
SPREAD

PCSTOR
B,0

B
PCSTOR

PROGRAM CARTRIDGE SOURCE CODE LISTINGS C-41

736E E3 SHOTEL XTHL

736F 7E DISPL MOV A,M
7370 23 INX H
7371 B7 ORA A
7372 CA 7B 73 Jz EXIT
7373 CD 46 00 CALL PUTC
7378 C3 6F 73 JMP DISPL
737B E3 EXIT XTHL

737C C9 RET

737D 7A HWORD MOV A,D
737E CD 82 73 CALL DCHEX
7381 7B HBYTE MOV AE
7382 F5 DOHEX PUSH PSW
7383 OoF RRC

7384 OF RRC

7385 oF RRC

7386 oF RRC

7387 CcD 8B 73 CALL HEXOUT
7382 F1 POP PsSw
738B E6 OF HEXOUT ANI 00FH
738D C6 30 ADI 030H
738F FE 3A CPI mem
7391 DA 96 73 JC QUTPUT
7394 ce 07 ADI 007H
7396 CD 46 00 QUTPUT CALL PUTC
739% co RET

739A

7392 PCSTOR DS 2
739C PSWSTOR DS 2
T3%E BSTOR DS 2
73A0 DSTCR DS 2
7342 HSTOR Ds 2
T3A4 SPSTOR DS 2
73A6 BUFFR DS 10H
73B6 4E 4F 50 02 TABLE DB "NOP™, 2

All mnemonics copyright of Intel Corporation, 1989

C-42 PROGRAM CARTRIDGE SOURCE CODE LISTINGS

73BA 4C 58 49 20 42 DB "LXI B,",10
2C 0A

73C1 53 54 41 58 20 bB "STAX B",2
42 02

73C8 49 4E 58 20 42 DB "INX B",2
02

73CE 49 4E 52 20 42 DB "INR B",2
02

73D4 44 43 52 20 42 DB "DCR B",2
02

73DA 4D 56 49 20 42 DB "MVI B,",7
2C 07

73E1 52 4C 43 02 DB "RLC", 2

73E5 3F 3F 3F 3F 01 DB SRR al

73EA 44 41 44 20 42 DB "DAD B",2
02

73F0 4C 44 41 58 20 DB "LDAX B",2
42 02

13F7 44 43 58 20 42 DB "DCX B",2
02

73FD 49 4E 52 20 43 DB "INR C",2
02

7403 44 43 52 20 43 DB "DCR c", 2
02

7409 4D 56 49 20 43 DB "MVI C,",7
2C 07

7410 52 52 43 02 DB "RRC", 2

7414 3F 3F 3F 3F 01 DB 22230, 1

7419 4C 58 49 20 44 DB "LXI D,", 10
2C 0A

7420 53 54 41 58 20 DB "STAX D",2
44 02

7427 49 4E 58 20 44 DB "INX D*,2
02

742D 49 4E 52 20 44 DB "INR D", 2
02

7433 44 43 52 20 44 DB "DCR D", 2

All mnemonics copyright of Intel Corporation, 1989

PROGRAM CARTRIDGE SOURCE CODE LISTINGS C-43

0z

7439 4D 56 49 20 44 DB "MVI D,",7
2C 07

7440 52 41 4C 02 DB "RAL"™, 2

7444 3F 3F 3F 3F 01 DB SRR

7449 44 41 44 20 44 DB "DAD D",2
02

T44F 4C 44 41 58 20 DB "LDAX D", 2
44 02

7456 44 43 58 20 44 DB "DCX D", 2
02

745C 49 4E 52 20 45 DB "INR E",2
02

7462 44 43 52 20 45 DB "DCR E",2
02

7468 4D 56 49 20 45 DB "™MVI E,",7
2C 07

T4 6F 52 41 52 02 DB "RAR"™, 2

7473 52 49 4D 02 DB "RIM", 2

7477 4C 58 49 20 48 DB "LXI H, ", 10
2C 0a

T47E 53 48 4C 44 20 DB "SHLD ", 10
OA

7484 49 4E 58 20 48 DB "INX H",2
02

748A 49 4E 52 20 48 DB "INR H",2
02

7490 44 43 52 20 48 DB "DCR H",2
02

7496 4D 56 49 20 48 DB "MVI H,",7
2C 07

749D 44 41 41 02 DB "DAA", 2

74A1 3F 3F 3F 3F 01 DB rledrdp ol

7406 44 41 44 20 48 DB "DAD H",2
02

T4AC 4C 48 4C 44 20 DB "LHLD ",2
02

All mnemonics copyright of Intel Corporation, 1989

C-44 PROGRAM CARTRIDGE SOURCE CODE LISTINGS

T4B2

74B8

7T4BE

74C4

74CB

T4CF

74D3

74DB
T4E0Q

74E7

74ED

74F3

T4FA

74FE

7503

750A
750F

7516

751C

7522

7529
152D

44 43 58

02
439
02
44
02
4D
e
43
53
4c
50
53
49
50
49
02
44
02
4D
2C
53
3F
44
50
4Cc
44
50
49
02
44
02
4D
2C
43
4D
2C

4E

43

13
07
4D
49
58
2C
54

4E

02
4E

43

56
07
54
3F
41
02
44
43
0z
4E

43

56
07
4D
4F
42

52

52

49

41

4D

49

0A

41

58

52

52

49

43

3F

44

41
58

52

52

49

43

56
02

20

20

20

20

02

02

20

20
20

20

20

20

02

3F

20

20
20

20

20

20

02
20

48

4C

4ac

4Cc

53

OA
53

4D

4D

4D

01

53

oA
53

41

41

41

42

DB

DB

DB

DB

DB

DB

DB

DB
DB

DB

DB

DB

DB

DB

DB

DB
DB

DB

DB

DB

DB
DB

All mnemonics copyright of Intel Corporation, 1989

"DCX H",2
"INR L",2
"DCR L",2
"MVI L,",7
"CMA™, 2
"SIM", 2

"LXI sp,", 10

"STA ", 10
"INX SP7,2

"INR M",2
"DCR M",2
"MVI M, ", 7
NSweans
"2222",1

"DAD SP",2

"LDA ", 10
"DCX SP™,2

"TNR A" s

"DCR A", 2

"MVI A,",7

"cMc", 2
"MOV B,B",2

PROGRAM CARTRIDGE SOURCE CODE LISTINGS C-45

7535

753D

7545

754D

73555

755D

7565

756D

7575

757D

7585

758D

7585

759D

7T5A5

75AD

75B5

75BD

75C5

4D
2C
4D
2C
4D
2C
4D
2C
4D
2C
4D
2C
4D
2C
4D
2C
4D
2C
4D
2C
4D
2C
4D
2C
4D
2C

2C
4D
2c
4D
2C
4D
2C
4D
2C
4D

4F
43
4F
44
4F
45
4F
48
4F
4C
4F
4D

41
4F
42
4F
43
4F
44
aF
45
4F
48
4r
4Cc
4F
4D
qaF
41
4F
42
4F
43
4F

44

56
02
56
02
56
02
56
02
56
02
56
0z
56
02
56
02
56
02
56
02
56
cz2
56
02
56
02
56
02
56
02
56
02
56
02
56
02
56

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

42

42

42

42

42

42

43

43

43

43

43

43

43

43

44

44

44

44

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

All mnemonics copyright of Intel Corporation, 1989

"MOV

"MOV

"MOV

"MOV

MOV

"Mov

MOV

YIMOV

MOV

IIMOV

" MOV

MOV

MOV

"MOV

"MOV

"MOV

IIMOV

" MOV

"MOV

B,C",2

B,D",2

B,E",2

B,H",2

B,L",2

B,M",2

B,A",2

c,B",2

C;ch,2

c,b",2

C.E",2

C,H",2

c,n", 2

C,M",2

c,a",2

D,B",2

D,c",2

D,D",2

D,E",2

C-46 PROGRAM CARTRIDGE SOURCE CODE LISTINGS

75CD

75D5

75DD

75E5

75ED

15F5

75FD

7605

760D

7615

761D

7625

762D

7635

763D

7645

764D

7655

2C
4D
2C
4D
2c
4D
2Cc
4D
2C
4D
2c
4D
2Cc
4D
2C
4D
2C
4D
2C
4p
2C
4D
2C
4D
2C
4D
2C
4D
2C
4D
2C
4D
2C
4D
2C
4D
2C

45
4F
48
4F
4cC
4F
4D
4F
41
4F
42
4F
43
4F
44
4F
45
4F
48
4F
4c
4F
4D
4F
41
4F
42
4F
43
4F
44
4F
45
4F
48
4F
4C

02
56
02
56
02
56
02
56
02
56
02
56
02
56
02

02
56
02
56
02
56
02
56
02
56
02
56
02
56
02
56
02
56
02
56
02

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

44

44

44

44

45

45

45

45

45

45

45

45

48

48

48

48

48

48

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

All mnemonics copyright of Intel Corporation, 1989

"MOV

MOV

MOV

"MOV

"MOV

"MOV

"MOV

"MOV

"Mov

"MOV

MOV

MOV

" Mov

MOV

"MOV

MOV

MOV

"MOV

D,H",2

D,L",2

D,M",2

D,A",2

E,B",2

E,C",2

E,D",2

E,E",2

E,H",2

E,L", 2

E,M", 2

E,A",2

H,B",2

H,C", 2

H,D",2

H,E",2

H,H",2

H,L",2

PROGRAM CARTRIDGE SOURCE CODE LISTINGS C-47

765D 4D 4F 56 20 48 DB "MOV H,M",2
2C 4D 02

7665 4D 4F 56 20 48 DB "MOV H,A",2
2C 41 02

766D 4D 4F 56 20 4C DB "MOV L,B",2
2¢C 42 02

7675 4D 4F 56 20 4C DB "MOV L,C",2
2C 43 02

767D 4D 4F 56 20 4C DB "MOV L,D",2
2¢C 44 02

7685 4D 4F 56 20 4C DB "MOV L,E",2
2C 45 02

768D 4D 4F 56 20 4C DB "MOV L,H",2
2¢ 48 02

7695 4D 4F 56 20 4C DB "MOV L,L",2
2C 4C 02

769D 4D 4F 56 20 4C DB "MOV L,M",2
2C 4D 02

76A5 4D 4F 56 20 4C DB "MOV L,A",2
2C 41 02

76AD 4D 4F 56 20 4D DB "MOV M, B",2
2C 42 02

76B5 4D 4F 56 20 4D DB "MOV M, C",2
2C 43 02

76BD 4D 4F 56 20 4D DB "MOV M, D", 2
2C 44 02

76C5 4D 4F 56 20 4D DB "MOV M,E",2
2C 45 02

76CD 4D 4F 56 20 4D DB "MOV M,H",2
2c 48 02

76D5 4D 4F 56 20 4D DB "MOV M, L",2
2c 4c 02

76DD 48 4C 54 04 DB "HLT", 4

76E1 4D 4F 56 20 4D DB "MOV M, A", 2
2C 41 02

76E9 4D 4F 56 20 41 DB "MOV A,B",2
2C 42 02

All mnemonics copyright of Intel Corporation, 1989

C-48 PROGRAM CARTRIDGE SOURCE CODE LISTINGS

76F1

T6F9

7701

7709

58!

7719

7721

7729

T72F

i3S

773B

7741

7747

774D

/R

59

775F

7765

4D
2c
4D
2C
4D
2C
4D
2C
4D
2C
4D
2C
4D
2C
41
02
41
02
41
02
41
02
41
02
41
02
41
02
41
02
41
02
41
02
41
02

4F
43
4F
44
4F
45
4F
48
4F
4ac
4F
4D
4F
41
44

44

44

44

44

44

44

44

44

44

56
02
56
02
56
02
56
02
56
02
56
02
56
02
44

44

44

44

44

44

44

44

43

43

43

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

41

41

41

41

41

41

41

42

43

44

45

48

4ac

4D

41

42

43

44

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

All mnemonics copyright of Intel Corporation, 1989

MOV

"MOV

"MOV

"MOV

"MOV

MOV

MOV

"ADD

"ADD

"ADD

"ADD

"ADD

"ADD

"ADD

"ADD

"ADC

"ADC

“"ADC

A,C",2

A,D",2

A,EY,2

A,H",2

A,L",2

A,M",2

A,A",2

B",2

Cn,z

b“,2

E",2

H",2

L", 7

M",2

A™,2

B", 2

G

D", 2

PROGRAM CARTRIDGE SOURCE CODE LISTINGS C-49

776RB 41 44 43 20 45 DB "ADC E",2
02

7771 41 44 43 20 48 DB "ADC H",2
02

7777 41 44 43 20 4cC DB "ADC L™, 2
02

777D 41 44 43 20 4D DB "ADC M",2
02

7783 41 44 43 20 41 DB "ADC A",2
0z

7789 53 55 42 20 42 DB "SUB B",2
0z

778F 53 55 42 20 43 DB "SUB C™,2
0z

7795 53 55 42 20 44 DB "sSUB D%, 2
02

779B 53 55 42 20 45 DB "SUB E",2
02

7721 53 55 42 20 48 DB "SUB H",2
02

T7A7 53 55 42 20 4cC DB "sSUB L",2
02

77AD 53 55 42 20 4D DB "SUB M",2
02

77B3 53 55 42 20 41 DB "SUB A",2
02

77B9 53 42 42 20 42 DB "SBB B",2
02

77BF 53 42 42 20 43 DB "SBB C",2
02

ElCS 53 42 42 20 44 DB "SBB D",2
02

77CB 53 42 42 20 45 DB "SBB E",2
02

77D1 53 42 42 20 48 DB "SBB H",2
02

All mnemonics copyright of Intel Corporation, 1989

C-50 PROGRAM CARTRIDGE SOURCE CODE LISTINGS

77D7 53 42 42 20 4cC DB "SBB L",2
02

77DD 53 42 42 20 4D DB "SBB M",2
02

77E3 53 42 42 20 41 DB "SBB A",2
02

77ES 41 4E 41 20 42 DB "ANA B",2
02

77EF 41 4E 41 20 43 DB "ANA C",2
02

77F5 41 4E 41 20 44 DB "ANA D",2
02

77FB 41 4E 41 20 45 DB "ANA E",2
02

7801 41 4E 41 20 48 DB "ANA H",2
02

7807 41 4E 41 20 4cC DB "ANA LY, 2
02

780D 41 4E 41 20 4D DB "ANA M",2
02

7813 41 4E 41 20 41 DB "ANA A“,2
02

7819 58 52 41 20 42 DB "XRA B",2
02

781F 58 52 41 20 43 DB "XRA C",2
02

7825 58 52 41 20 44 DB "XRA D", 2
02

782B 58 52 41 20 45 DB "XRA E",2
02

7831 58 52 41 20 48 DB "XRA H",2
02

7837 58 52 41 20 4c DB "XRA L%, 2
02

783D 58 52 41 20 4D DB "XRA M",2
02

All mnemonics copyright of Intel Corporation, 1989

PROGRAM CARTRIDGE SOURCE CODE LISTINGS C-51

7843 58 52 41 20 41 DB "XRA A", 2
02

7849 4F 52 41 20 42 DB "ORA B",2
02

T84F 4F 52 41 20 43 DB "ORA C",2
02

7855 4F 52 41 20 44 DB "ORA D", 2
02

785B 4F 52 41 20 45 DB "ORA E",2
02

7861 4F 52 41 20 48 DB "ORA H",2
02

7867 4F 52 41 20 4cC DB "ORA L",2
02

786D 4F 52 41 20 4D DB "ORA M",2
0z

7873 4F 52 41 20 41 DB "ORA A",2
02

7879 43 4D 50 20 42 DB "CMP B™,2
02

T87F 43 4D 50 20 423 DB "CMP C",2
02

7885 43 4D 50 20 44 DB “"CMP D", 2
02

788B 43 4D 50 20 45 DB "CMP E",2
02

7891 43 4D 50 20 48 DB "CMP H",2
0z

7897 43 4D 50 20 4cC : DB "CMP L“,2
02 7

789D 43 4D 50 20 4D DB "CMP M",2
02

T8A3 43 4D 50 20 41 DB "CMP A", 2
02

78A9 52 4E 5A 06 DB "RNZ", 6

78AD 50 4F 50 20 42 DB "POP B",2
02

All mnemonics copyright of Intel Corporation, 1989

C-52 PROGRAM CARTRIDGE SOURCE CODE LISTINGS

78B3 4A 4E 5A 20 08 DB "JNZ ",8
78B8 4A 4D 50 20 08 DB "JMP *,8
78BD 43 4E 5A 20 09 DB "CNZ ",9
78C2 50 55 53 48 20 DB "PUSH B",2
42 02
78C9 41 44 49 20 07 DB "ADI ",7
T8CE 52 53 54 20 30 DB "RST O",3
03
78D4 52 5A 06 DB "RZ", 6
78D7 52 45 54 06 DB "RET", 6
78DB 4A 5A 20 08 DB "Jz ",8
78DF 3F 3F 3F 3F 01 DB i dedrdriiial
78E4 43 5A 20 09 DB "czZ ",9
78EB - 43 41 4C 4C 20 DB "CALL ",9
09
T8EE 41 43 49 20 07 DB "ACI ",7
78F3 52 53 54 20 31 DB "RST 1,3
03
78F9 52 4E 43 06 DB "RNC", 6
78FD 50 4F 50 20 44 DB "POP D",2
02
7903 4A 4E 43 20 08 DB "JNC ", 8
7908 4F 55 54 20 07 DB EOUT AT
790D 43 4E 43 20 09 DB "CNC ", 9
7912 50 55 53 48 20 DB "PUSH D", 2
44 02
7919 53 55 49 20 07 DB "suI “,7
791E 52 53 54 20 32 DB "RST 2",3
03
7924 52 43 06 DB "RC", 6
7927 3F 3F 3F 3F 01 DB neR22",. 1
792C 4 43 20 08 DB “Jc m,8
7930 49 4E 20 07 DB "IN ",7
7934 43 43 20 09 DB "ce ", 9
7938 3F 3F 3F 3F 01 DB YR Gl
793D 53 42 49 20 07 DB "SBI *,7

All mnemonics copyright of Intel Corporation, 1989

PROGRAM CARTRIDGE SOURCE CODE LISTINGS C-53

7942 52 53 54 20 33 DB "RST 37,3
03
7948 52 50 4F 06 DB "RPO", 6
794C 50 4F 50 20 48 DB "POP H",2
02
7952 4A 50 4F 20 08 DB "JPO ",8
7957 58 54 48 4C 02 DB "XTHL",2
795C 43 50 4F 20 09 DB "CPO ", 9
7961 50 55 53 48 20 DB "PUSH H", 2
48 02
7968 41 4E 49 20 07 DB "ANI ",7
796D 52 53 54 20 34 DB "RST 4",3
03
7973 52 50 45 06 DB "RPE", 6
7977 50 43 48 4C 05 DB "PCHL", 5
787C 4A 50 45 20 08 DB "JPE ",8
7981 58 43 48 47 02 DB "XCHG", 2
7986 43 50 45 20 09 DB "CPE ", %
798B 3F 3F 3F 3F 01 DB R4
7990 58 52 4% 20 07 DB "XRI ", 7
7995 52 53 54 20 35 DB "RST 5",3
03
799B 52 50 06 DB "RP", 6
799E S0 4F 50 20 50 DB "POP PSW",2
53 57 02
79R6 4a 50 20 08 DB RUPSEE
79AR 44 49 02 DB "bIiv,2
79AD 43 50 20 09 DB "Cp ", 9
79B1 50 55 53 48 20 DB "PUSH PSW",2

50 53 57 02

79BA 4F 52 49 20 07 DB "ORI ",7

T79BF 52 53 54 20 36 DB "RST 6",3
03

79CS5 52 4D 06 DB "RM", 6

79C8 53 50 48 4C 02 DB "SPHL", 2

79CD 4A 4D 20 08 DB "JM ",8

All mnemonics copyright of Intel Corporation, 1989

C-54 PROGRAM CARTRIDGE SOURCE CODE LISTINGS

79D1
79D4
79D8
79DD
79E2

79E8

45
43
3F
43
52
03

49
4D
3F
50
53

02
20
3F
49
54

09

3F 01
20 07
20 37

DB
DB
DB
DB
DB

All mnemonics copyright of Intel Corporation, 1989

REREE
"CM ", 9
ek L% |
"CPI ",7
ERSINT=E

INDEX

|-2 INDEX

Aflag

Accumulator

Add

Address bus
Address register
ALU

AND

ASCII

Assemblers
Assembler directives
Assembly language
Auxiliary carry

Base port address
Binary coded decimal
Bits

Borrow

Branches

Bus

Byte

Carry
Calls
Circle
CMA
Coding
Compilers

Complement the accumulator

Conditional calls
Conditional jumps
Conditional returns
Condition codes
Connection

Controller-sequencer
CSEG

2-33
1-8
2-13

1-16
1-14, 2-6
2-24

1-9

4-6

5-18

3-7

2-9

6-6
2-31
1-8, 2-7
2-22
4-24
1-5

1-8

2-9, 2-14, 2-21, 2-34
5-10

4-13
2-31, 2-35
4-18

4-6

2-35

5-11

4-22

5-11

4-23

4-13

1-16

5-20

I-3 INDEX

DAA

DAD SP

Data bus

Decision

Diamond

Direct addressing
Direct loads and stores
DSEG

Exchange
Exclusive OR
Execute

Fetch

FIFO

Flags

Flowchart construction
Flow charts

Greater than

Halt (See halt)
High level languages
HLT

Immediate

Immediate addressing
IN

INTA

INTR

Index

Indirect loads and stores
Input

Instruction
Instruction decoder
Instruction set
Interpreters
Interrupts

/O

IO device

I0M

I/O port

2-31, 2-33
5-7

1-9

4-11

4-11

3-10

3-10

5-20

3-13
2-28
1-20, 1-32

1-20, 1-27
5-5

4-23

4-15

4-9

4-12

4-5
1-37

2-17
3-7
6-8
6-15
6-15
2-16
3-9
1-6, 6-11
1-6
1-16
2-10
4-6
6-14
1-6

6-5
1-6

-4 INDEX

Jumps

LIFO

Labels

Languages

Less than

Loads

Loops

Low level languages

Masking

Memory
Microcomputer
Microprocessor
Minuend
Mnemonic

Most signficant bit
Most significant bit
Move instructions

MPU

Nibble
NOT
NOP

Object code
Opcode
Operand
Operations
OR

ORG

ouT

Output
Outside world
Oval

4-22,4-24

5-6
3-7
4-5
4-12
3-9
4-24
4-5

2-25
1-16
1-5
1-5
2-21
1-21
1-10
1-10
3-5
1-5

1-17
4-12
6-12

4-6

1-21
1-14
4-14
2-26
5-20

6-5
1-6,6-12
1-6

4-10

[-5 INDEX

Parity

Planning

Pop

Port

Processor status word
Program

Programming model
Programming languages
Program counter

Pseudo operations
Push

Queue

RAM
RD

Read

Rectangle

Recursion

Recursive

Register

Registar transfers
Register array

Reset

Restart

Returns

RIM

ROM

Rotate around lefft
Rotate around right
Rotate left without carry
Rotate right without carry
RST

RST x.5

2-9

4-8
5-16
6-5

2-8

1-6, 4-5

4-5

1-16
5-18
5-16

5-5

1-19
6-5

1-18
4-14
5-14
5-14
1-9

3-12
2-7

6-18
6-18
5-10
6-10
1-19
2-35
2-35
2-36
2-36
5-12
6-16

|-6 INDEX

Serial output data
Serial output enable
SID

Sign

SIM

SOD

SOE

Source code

Stack

Stack Pointer
Stores

Stored program concept
Subroutines
Subtract
Subtrahend

Terminal
Transfers
TRAP

Unconditional jumps

WR
Word

Write

Zero

6-12
6-12
6-10
2-9
6-10
6-10, 6-12
6-12
4-6
5-5
5-6
3-9
1-6
5-10
2-20
2-21

4-10
3-12
6-14
4-21
6-5

1-8

1-17

2-9

